

eFPGA for AI and IoT Applications

Tim Saxe

CTO

IoT Technology Stack-Up – Overview

AI Applications

Al is like a power tool – theoretically it can do anything

- Build a house much easier with tool
- Put together a sofa easier with tool

If you can connect it to the real world

- Build a house much easier with tool
- Put together a sofa easier with tool

If you can connect it to the real world

- Build a house much easier with tool
- Put together a sofa easier with tool

And exactly what size problem are you trying to solve?

Can help here

Copyright © 2018 QuickLogic, Inc. All rights reserved.

Data center problem eFPGA

Can help here, too

Deep Learning Image Classification Network

Requires 128KB scratch memory and 6MB coefficient memory

Deep Learning Image Classification Network

Requires 128KB scratch memory and 6MB coefficient memory And somehow the image miraculously appears at the start

Deep Learning Image Classification Network

Requires 128KB scratch memory and 6MB coefficient memory eFPGA can manage the sensor and format the image

Edge Friendly Deep Learning Image Classification Network

Requires 8KB scratch memory and 150KB coefficient memory Fits a small eFPGA with scratch memory

10

Radial Basis Function Image Classification Network

DNN requires 128KB scratch memory and 6MB coefficient memory

11

eFPGA provides sensor flexibility

eFPGA provides real-time control

Conclusions

Big Iron AI uses powerful eFPGAs to further accelerate powerful data center CPUs

- IoT AI uses eFPGAs as part of an SoC to bring the benefits of hardware:
 - Real-time operation
 - Low-power operation

into the post-fab environment

- IoT AI uses eFPGAs as part of an SoC to:
 - Manage sensors
 - Preprocess and format data
 - Provide real-time control based on AI outputs

14

