www.design-reuse-embedded.com
Find Top SoC Solutions
for AI, Automotive, IoT, Security, Audio & Video...

2017 embedded processor report: At the edge of Moore's Law and IoT

With the benefits of Moore's Law waning and the Internet of Things (IoT) targeting an untold number of lower end devices, embedded processor vendors are now tailoring solutions to the specific needs of end customers and applications more than ever before. The result? An emphasis on power efficiency, security, development tools, and cost.

Brandon Lewis, Technology Editor, Jan. 31, 2017 – 

Forces at work in the electronics industry have reshaped the embedded processor landscape in recent years, among them, the slowing of Moore's Law and the realization that most IoT devices will emphasize price and power rather than feeds and speeds.

To be sure, embedded processors have traditionally been slow to adopt advanced process nodes, as longer lifecycles and the applications in question typically haven't required top-of-the-line performance. However, with the cost of developing chips that push the limits of semiconductor lithography on the rise, Jag Bolaria, Principal Analyst for Embedded and Servers at The Linley Group, expects that power efficiency and consumption will continue to displace performance as the key driver of embedded and IoT solutions.

"There is enough left in Moore's Law to take us out to 2022, but the rate of new process technology will slow down and the costs for development will increase," Bolaria says. "Specifically, the next nodes to come out are 10 nm in 2017, 7 nm around 2019, and 5 nm around 2022. The latter, however, is likely to need new fabrication technologies such as extreme ultraviolet (EUV) lithography, and at 5 nm, vendors may look at using exotic materials.

Click here to read more ...

 Back

Partner with us

List your Products

Suppliers, list and add your products for free.

More about D&R Privacy Policy

© 2024 Design And Reuse

All Rights Reserved.

No portion of this site may be copied, retransmitted, reposted, duplicated or otherwise used without the express written permission of Design And Reuse.