The FDSOI history and its future

Philippe Flatresse, PhD
Business Development Manager, FD-SOI Expert
Our “digital” world in 2020

2020

4
BILLION
Connected People

$4
TRILLION
Revenue Opportunity

25+
TRILLION
Apps

25+
BILLION
Embedded and Intelligent Systems

50
TRILLION
GBs of Data

Power Efficient Technologies are mandatory

Source: IDC
Choosing the right material is essential!

Needs of fully-depleted transistors
FD-SOI: more than 20 years success history

Flexibility, scalability and innovation: the success story of Silicon-on-Insulator (SOI) technology through key collaborations and achievements

- Smart Cut invention
- 1991
- SOITEC creation
- 1992
- 300mm Fab
- 1999
- Smart Cut Fab
- 2002
- UTBB
- 2009
- FDSOI prod
- @ GF, SEC, ST
- 2013 - 2014
- Multi-foundries adoption
- 2015
- R&D acceleration
- 2008 - 2012
- 3GHz+ AP
- 2017
The electrical history of FDSOI

- **Bulk Planar**
 - Electrostatic issues
 - ☹ High Sub-VT slope
 - ☹ High DIBL
 - ☻ Low Body Biasing Efficiency
- **PDSOI**
 - Electrostatic issues
 - ☹ High Sub-VT slope
 - ☹ High DIBL
 - ☻ Low Body Biasing Efficiency
 - ☻ History effect
- **ETSOI**
 - Electrostatic Recovery
 - ☺ Low Sub-VT slope
 - ☺ Low DIBL
 - ☻ Low Body Biasing Efficiency
- **UTBB**
 - Electrostatic Recovery
 - ☺ Low Sub-VT slope
 - ☺ Low DIBL
 - ☻ High Body Biasing Efficiency

Substrate

- Punch Through!
- Through Substrate
- Back Gate
Soitec ensures FD-SOI wafer supply

- Soitec Bernin II, France HVM
- 300mm SOI
- 650 K wafers/y. capacity of which FD-SOI capacity will be increased from 100 K wafers/y. to 400 K wafers/y.
- + 800 K wafers/y. capacity (FD-SOI pilot line launch – Sept. 17)

Total potential 300mm capacity = Up to 1.5 M wafers/y.

Pasir Ris, Singapore Ready HVM
FD-SOI focus stronger than ever

GF Chengdu fab announcement & fast construction

Increasing number of products
The winning combination

FD-SOI at the heart of Samsung foundry strategy

18nm announcement

<table>
<thead>
<tr>
<th>Performance</th>
<th>1.2X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.60X</td>
</tr>
<tr>
<td>Logic Area</td>
<td>0.70X</td>
</tr>
<tr>
<td>Mask set</td>
<td>+5Layer</td>
</tr>
</tbody>
</table>
22nm Benchmark

<table>
<thead>
<tr>
<th></th>
<th>TSMC 28HPM-8T</th>
<th>TSMC 22ULP-7T</th>
<th>GF 22FDX-8T</th>
<th>Intel 22FFL-7T</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP/Mx</td>
<td>126/90</td>
<td>108/90 (est.)</td>
<td>104/60</td>
<td>108/90</td>
</tr>
<tr>
<td>Die Scaling</td>
<td>1.0x</td>
<td>0.85x</td>
<td>0.78x</td>
<td>0.92x</td>
</tr>
<tr>
<td>Masks</td>
<td>47</td>
<td>47</td>
<td>36</td>
<td>>47</td>
</tr>
<tr>
<td>Perf@iso-Pwr TT, 25C</td>
<td>1.0x</td>
<td>1.20x</td>
<td>1.55x</td>
<td>1.35x</td>
</tr>
<tr>
<td>Pwr@iso-Perf TT, 25C</td>
<td>1.0x</td>
<td>0.65x</td>
<td>0.30x</td>
<td>0.50x</td>
</tr>
<tr>
<td>HD Cell Area (um²)</td>
<td>0.127</td>
<td>0.122</td>
<td>0.110</td>
<td>0.088</td>
</tr>
<tr>
<td>HD SRAM Vmin (V)</td>
<td>0.81V</td>
<td>0.81 (HD cell)</td>
<td>0.72V (HD cell)</td>
<td>0.77V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.60V (10T cell)</td>
<td>0.85V (6T LV cell)</td>
<td></td>
</tr>
<tr>
<td>Timeline</td>
<td>Qualified</td>
<td>V1.0 in 1Q18</td>
<td>Qualified</td>
<td>Qualified 4Q17</td>
</tr>
</tbody>
</table>
Is Body Bias really a Game Changer?
YES!
Body Bias as key differentiator for FDSOI

Take the control of your circuit
- Leakage reduction
- Performance Boosting

Do it dynamically!
- Dynamically switch between high perf & low leakage

Take the control of your process
- Offset process variation

Operate safe at the edge
- Adaptive Body Bias

Energy management

Compensation
Body Bias gain per market segment

- Performance Boost: +200%, +50%, +20%
- Power Reduction: 10X, 2X, 1.5X

Benchmark vs noBB

High Perf | Energy Efficiency | Low Power | Ultra Low Voltage

soitec
FD-SOI key features summary

- **mmWave RF-CMOS**
- **Ultra Low Voltage**
- **Process compensation through body bias**
- **Immunity to radiations**

- Best CMOS mmWave with similar performance to SiGe radios
- Operation at minimum energy point (<0.4V)
- 4X less process spread
 +15% frequency boost
- 20x Soft Error Rate improvement vs. bulk

- **Performance**
 - 400GHz fMax
 - 24.8 pJ (0.50V, 3 MHz)
 - 13.4 pJ (0.35V, 14 MHz)

- **Neutron SER in FT/Mb**
 - ST Vendor A
 - ST 65nm Bulk
 - ST 45nm Bulk
 - Vendor A 28nm Bulk
 - ST 28nm Bulk
 - ST 28nm FD-SOI

Source: GF, GTC2017
Source: Sugii, Low Power El. Appl. 2014
Source: P. Fiatresse, ST, ICICDT17
Source: ST, Shanghai FDSOI forum, 2015
FD-SOI ecosystem is getting stronger

- Research Technology & IP
 - CEA
 - LETI
 - STI
 - SAMSUNG
 - GLOBALFOUNDRIES

- Substrates
 - Soitec & Licensees

- Foundries & IDMs
 - SILICON FOUNDRIES
 - RENESAS
 - SAMSUNG
 - GLOBALFOUNDRIES
 - HLMC

- Tools & EDA
 - Keysight Technologies
 - Mentor Graphics

- IP & Design Services
 - Calchip
 - Surecore
 - Invectas
 - QUALCHIP
 - VeriSilicon
 - I-Micron
 - SILVACO
 - SYNAPSE Design
 - ARM
 - Open-Silicon
 - SFARDS
 - Analog Bits
 - Unify
 - Mentor Graphics
 - QuickLogic
 - Sigma Designs
 - Cadence

- Fabless & OEMs
 - NXP
 - SONY
 - Rambus
 - ARM
 - SiFive
 - Xilinx
 - AMICORE
 - ATTOPSEMI
 - Leader Silicon
 - X-FAB
 - LATTICE

- >100 customer engagements
FD-SOI for Automotive

Best power efficiency allowing simpler integration and enhanced reliability

FD-SOI - Reference technology for ADAS level 3 applications

Next generation e-Cockpit solution with full management of car infotainment
FD-SOI for Internet of Things

A game changer technology for better battery life

FD-SOI cuts standard GPS power consumption by 5 to 10 times

i.MX reference platform by NXP
FD-SOI: 3 steps adoption

Unique Features:
- Body Bias Compensation
- mmWave CMOS
- Radiation immunity

Platform Versatility: Energy Efficiency + Performance on Demand

Differentiation Options: RF, MRAM, ULP
Take-Aways

FDSOI is at the heart of every day life!

Power efficient & flexible technology with easy Analog/RF integration

Power, Performance not forgetting cost

Engineered substrate brings clear value to device

This is just the beginning...