

How to accelerate SoC Power Network Architecture Exploration

IP SoC Day - Grenoble - Martine FALHON - Product Marketing Manager

ABOUT DOLPHIN INTEGRATION

Since 1985

HQ in Grenoble, France Subsidiaries in Canada & Israël

150 highly qualified design engineers for Mixed Signal development

Renowned for

- Silicon IPs
- Design Methodology Software
- ASIC Design & Supply

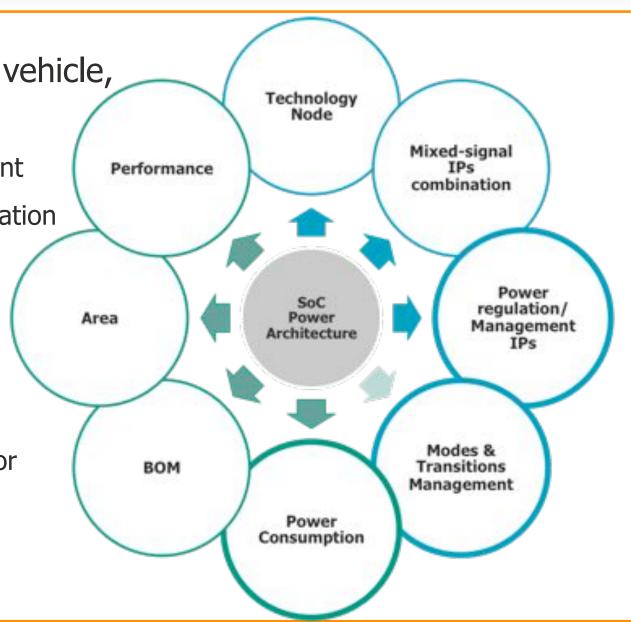
- > 200 Silicon IPs available across multiple nodes and foundries
- Power Management
- Standard Cell libraries
- Memory Compilers
- Audio CODECs/ADCs/DACs & Triggers
- Oscillators

> 500 customers worldwide

 Demanding markets (IoT, Autonomous vehicle, Mobile)

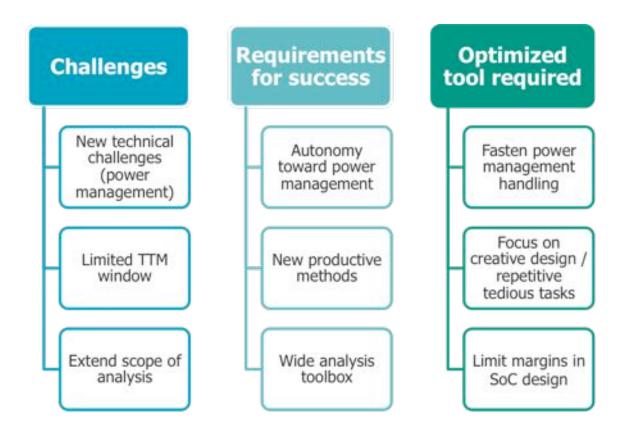
Performance is not anymore the only constraint

→ Power consumption has to be part of the equation


 New of smart and energy efficient SoC architectures based on stringent PPA

meet end-users quest of compacity

counterbalance manufacturing expenses


maximized leadtime before battery recharge or replacement

Manual processing is no more suitable

A GAME CHANGER FOR SOC ARCHITECTS

- SoC Architect, the BIG PICTURE owner
- Energy efficient SoC -> Focus on SoC Power Network

BRIDGE THE GAP BTW SPECIFICATIONS AND EDA TOOLS

DEFINE your SoC architecture with PowerStudio™

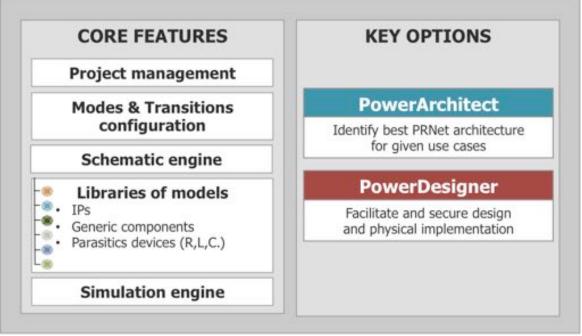
SPEC from customer

EXPLOREeach candidate
architecture
with PowerArchitect

GENERATEformats of the
winning architecture
with PowerDesigner

EDA Solutions

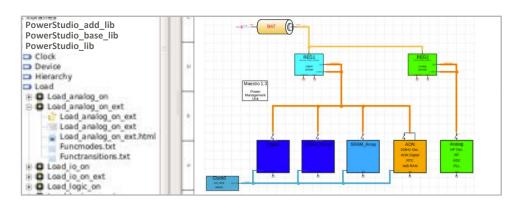
POWERSTUDIOTM FEATURES

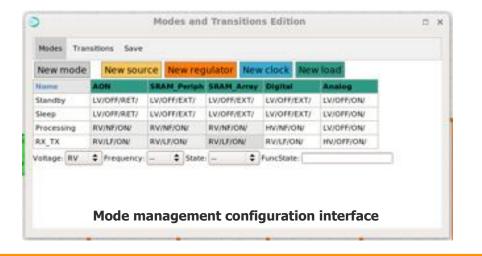


- → To **BUILD** a set of candidate SoC power network architectures
- → To RUN all required upcoming simulations
- Key features
 - → To **EXPLORE** architectures (PowerArchitect)
 - → To **GENERATE** optimized architecture related views (PowerDesigner)

SPEC

from customer





BUILD a set of candidates of SoC power network architectures

- Project hierarchy
- Schematics based on a growing library of models
- Modes and transitions
- Build a set of similar synopses for further comparisons

Building of a synoptic in the schematic interface

IP Compatibility Check

Figure of Merit score

Implementation Quandary score

IP COMPATIBILITY CHECK (IPCC)

- Early detect big inconsistencies in conception
- Control cross-block electrical specifications compatibility in each mode - input/output voltage, output current and impedance
- Check power supplies can provide the level of current expected by their respective associated loads

IPCC results display

FIGURE OF MERIT SCORE (FOM)

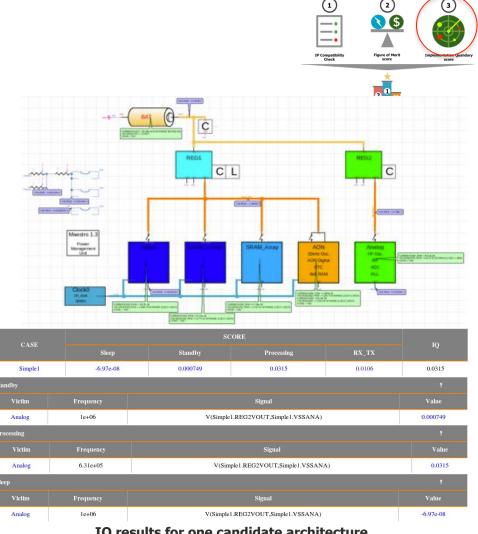
- Cost efficiency evaluation
- FOM configuration factors
 - → Area (SoC components + Pads & Pins for bounding)
 - → BOM (peripheral devices)
 - → Power consumption (at component and mode levels)
- Sub score weighting / constraints
- Architectures ranking based on respective FOM score comparison

The lower the better -

FOM score

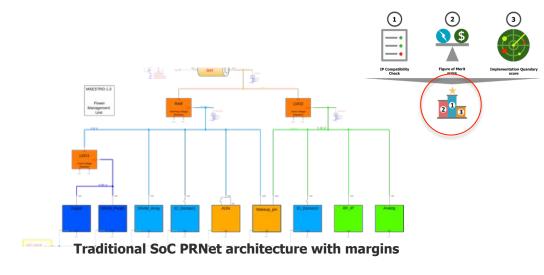
_

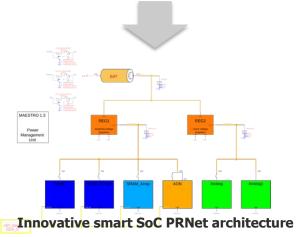
Area*% + BOM*% + Power consumption*% (Wa + Wb + Wp =
$$100\%$$
)


Synopsis	Total area (mm2)		BoM costs			Power consumption at battery source (mW)			5300
	Core	Pads	c		Package pins	Active mode	Sleep mode	Total	FoM
#1	1.58	1.65	2	2	10	20.52	0.016	0.103	0.135
#2	0.18	0.24	1	0.	3	36.36	0.194	0.192	0.191
#3	0.68	0.71	1	1	5	20.35	0.015	0.102	0.115
#4	0.91	0.94	1	1	5	20.35	0.015		0.119
#5	0.68	0.71	1	10	5	20.27		0:102	0.114
a of PRNet	Ĵ				Consumption attery source	Ĵ	Ĵ	<u>_</u>	

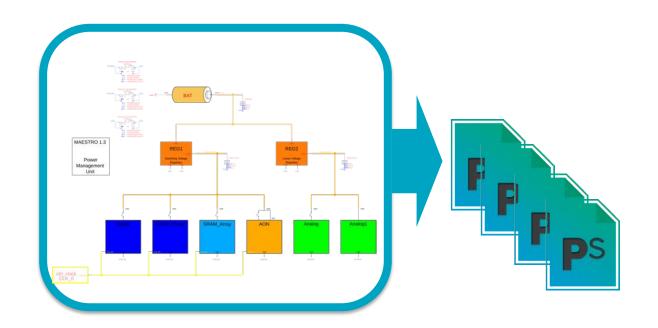
Comparison of a set of candidate architectures based on their respective FOM scores

IMPLEMENTATION QUANDARY SCORE (IQ)


- Risk evaluation of component implementation
- Early detection of power integrity issues
- IQ configuration factors
 - Potential noise level generated by agressors (digital loads, regulators)
 - Noise tolerance level of potential victims (analog loads)
- Consolidated view of
 - → Level of noise generated by power supply oscillations deterioring the SoC performance
 - Frequences propagation path monitoring
 - → Risk of side load aggression
- Architectures ranking based on respective IQ score comparison



IQ results for one candidate architecture


BEST OPTIMIZED ARCHITECTURE

- Compare both FOM and IQ score rankings
- Identify the best trade-off between costefficiency and risk of implementation
- From traditional SoC power network architectures to more innovative combinations

- From architecture to design stage
 - → Budget views
 - → Aligned UPF/RTL Top views
 - → Dolphin Power Management Unit (MAESTRO) configuration file
- Mirrors all the strategic data of your winning synoptic
- Forget tedious manual generation of views

How will PowerStudioTM add value to architects?

VALUE-ADDED FEATURES

Agile project management

Modes configuration interface

Ever-growing centralized library of IP models

User-friendly schematics

Wide scope of exploration criteria

Automatic views generation

Noise propagation simulation

Results export

BENEFITS FOR ARCHITECTS

Increasing range of PRNet architectures assessed

Cost efficiency

Risk limitation

Smart and optimized PRNet architecture definition

Faster PRNet architecture exploration

Right-on-first pass PRNet architecture (no iteration loop)

Smart bridge from Architecture to Design

Global TTM reduction

PowerStudio™ v1.0

- → Includes PowerArchitect's SoC power network architecture exploration key feature
- → Available on January 7th, 2019
- Apply now to become a Beta Tester!
 - → Looking for Beta Testers to integrate the PowerStudioTM V1.0 Beta Test program
 - → Apply at <u>contact@dolphin.fr</u>

Thank You

Input

- Key architecture components and their distribution within Power Islands
- Modes & Transitions
- Power, Area, BoM-related specific information of each power islands
- % of use of each mode
- Global weight of Area, BoM & Power for candidate architectures' FoM calculation

Output

- Scoring/checks algorithms
 - → IPCC: Check of PRNet components compatibility (compatibility check)
 - → **FoM:** Score consolidating weighted BoM, Area and Power consumption for a given architecture. The set of weights of a FoM reflects a specific use case constraints (cost efficiency optimization index)
 - → **IQ:** Evaluates the noise resilience of a circuit in regards on the various levels of impact that frequency variations propagated through the candidate architecture may have on sensitive loads (**power integrity index**)
- Results
 - Comparison of the analysis results of a given set of architectures
 - → Export
 - to MS Excel
 - New export formats to come (PowerDesigner™): RTL top, UPF top, budgets, and other useful files related to the winning architecture
 17