Securing the connected world

Security acceleration for cloud computing/data centers
Company history

- 1991: Founded as ASIC design house in Louvain-la-Neuve, Belgium
- 1995: Becomes part of the Barco group.
- 1999: 1st SoC development for payment terminal
- 2003: Introduction of JPEG2000 IP cores for FPGAs
- 2011: Introduction of Public Key and AES cryptographic IP cores
- 2015: Technology & Engineering Emmy Award for J2K Interop
- 2016: Introduction of VIPER: HDMI over IP OEM board
- 2016: Introduction of eSecure: Embedded Security IP
- 2018: Barco Silex becomes Silex Insight and part of the Vehold group
- Silex Insight today:
 - Staff of 35
 - ISO 9001-2008
Security markets/applications

- End-point, edge computing, data center
Security IP products overview

- **eSecure (HW Root Of Trust, Security Enclave)**
 - Secure Boot
 - Secure Debugging
 - Secure Key Storage
 - Device Authentication
 - Anti-tampering – Side Channel Attack protection
 - PUF available
 - Low power features (retention, power down)
 - Evita compliant – Crypto Driver API from AUTOSAR for host library
 - Several processors integrated
 - RISC-V Controller (from various partners)
 - ARM
 - MIPS
 - **Wide range of cryptographic algorithms**
 - **Silicon proven**

- **Applications:** Automotive, Industrial, Cloud computing, IoT end Node device, Wireless communications
Security IP products overview

- **MACSec packet processor 400/800 Gbps** – Cloud computing
- **IPSec packet processor 100 Gbps** – Cloud computing
 - IPv4/IPv6
 - AES-GCM, Chacha20Poly1305
- **Multi PK engine – Cloud computing, Blockchain**
 - TLS/SSL connections offloading co-processor for TLS 1.2 and 1.3
 - Crypto currency transaction
 - V2x certificate generation
- Bus Encryption protecting DDR content
- In line decryptor
- Crypto-Coprocessor

- Customization and design services on the security IP products
Supported Cryptographic algorithms

- **Asymmetric algorithms**
 - RSA/DH/DSA/CRT/ECC/ECDSA/ECDH
 - ECC Curves: NIST, Brainpool, Koblitz, Montgomery, Edwards and others...
 - Apple HomeKit/TLS1.3: Curve25519, EdDSA/Ed448, SRP
 - Thread Protocol: J-PAKE
 - Rabin-Miller (primality check) and Key Generation
 - SM2, Ed448, EC-KCDSA, ECIES, ECMQV

- **Symmetric algorithms**
 - AES supporting all modes (GCM, CCM, CFB, CBC...)
 - Very High performance AES-GCM/CTR/XTS > 400 Gbps
 - 3GPP algorithms (Snow3G, Kasumi, ZUC)
 - Chacha20_poly1305 – TLS 1.3/Apple HomeKit
 - Very High performance Chacha20_poly1305 > 400 Gbps
 - SHA1/2, SM3
 - SHA-3
 - SM4
 - 3-DES core

- **Random Number Generators**
 - TRNG (NIST 800-90B and AIS-31)
 - DRBG (NIST 800-90A compliant)

- **Unrivalled performances & trade-off performances/area**

- **Very high level of scalability and flexibility**

- **Associated Bare-Metal Drivers – Integration into lightweight TLS/DTLS lib**

- **All cores share the same AMBA interface**
 - AXI4 stream
 - AHB/AXI master
 - Embedded DMA for symmetric algorithms

- **FIPS 140-2 (level 3/4) / PCI Certification**
Connected world

- Data center challenges
 - High throughput secure data processing
 - High performance secure connection engine
 - Requires HW offloading to ASIC or FPGA
 - Reduce power consumption
 - Increase performance
 - Offload processor
High Perf security protocols

- IPSec: today's requirements can go up to 100 Gbps
- MACSec: today's requirements can go up to 400/800 Gbps
- TLS/SSL connections offloading: requires several 10-Ks connections/s
IPsec/MACsec

- Data transfer:
 - Source authentication
 - Data integrity
 - Confidentiality

 → IPsec/MACsec is the transport security protocol of choice

 - Software implementations not well suited
 - timing-critical
 - high-throughput applications
 - HW offloading required
IPSec

- Scalable solution going up to 100 Gbps
- Cryptography algorithms: AES-GCM / Chacha20Poly1305
- Tunnel Mode
- Classification
- ESP encapsulation
- Key size up to 256 bits
- IPv4/IPv6
MACsec

- MACSec Features:
 - Datapath from 128 to 1024 bits
 - SecTag encapsulation/decapsulation
 - ICV calculation/checking
 - Interface to TCAM
 - Classification
 - Scalable solution: from 10 Gbps to 800 Gbps
Secure connection engine

- Secure connections
 - TLS/SSL connections
 - Requires compute intensive asymmetric cryptography
 - Software implementations not well suited
 - high number of connections/sec (PK operations)
 - HW offloading required
TLS/SSL connection engine

- TLS/SSL connections offloading
 - Several tenths of thousands connections per second
 - Support for TLS 1.2/1.3 algorithms (RSA, ECC, NIST/Brainpool/X.25519, X.448/EdDS, Ed448 and others)
 - Can be implemented in FPGA and ASIC
 - Several 10k’s TLS/SSL connections per second
 - Several hundred thousand ECC P-256 operation per second
 - Above 1GHz on latest ASIC technology, and 600/700 MHz on latest FPGA
 - HW load balancer schedules optimal use of high performance PK engines
Needs and benefits

- HW IPsec/MACsec engine
 - Very high throughput (800Gbps with one engine)
 - Host CPU is free for other critical tasks
 - Improved security

- HW TLS/SSL connection engine
 - Several 10K operations/sec (sign and verify)
 - Host CPU is free for other critical tasks

- FPGA availability in data centers allows for cheap but very efficient implementation