
Automotive IP Cores: Challenges & Solutions

Turbulence in Automotive Markets

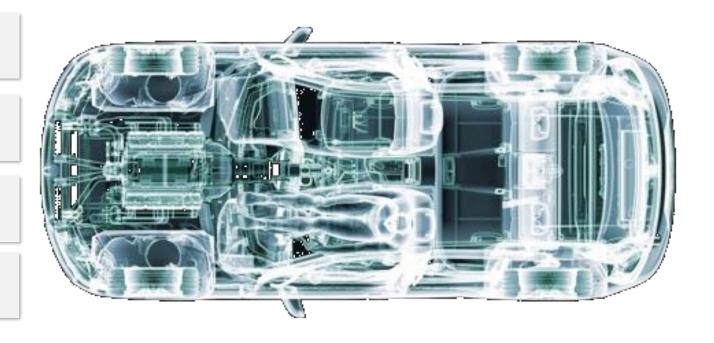
- ► ADAS, Self driving cars, Increased digitization throughout are causing disruption in traditional supply chains
- Traditional auto design teams are not well equipped to deal with issues
 - Software / hardware tradeoffs
 - Custom ASICs vs. traditional system designs
 - Safety issues everywhere slowing investment

New competition

- Tesla, et.al.
- Alternate modes of transport

Opportunity

Focus on cores that will be essential in this new world


Data Center on Wheels

Cameras 20-40 MB/sec

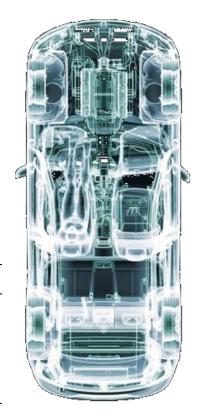
GPS ~50 KB/sec

Sensors
1 - 3 MB/sec

LIDAR 10-50 MB/sec

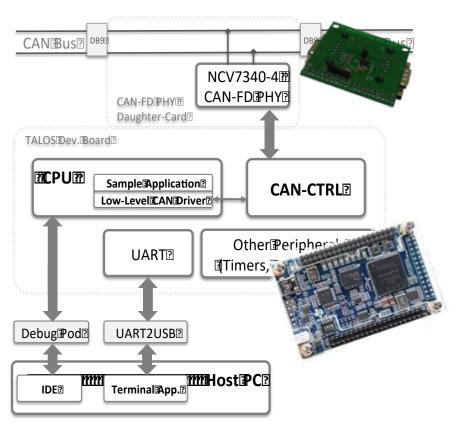
GBytes/sec, TBytes/hour to be communicated, processed, and stored

Some Challenges IP Cores Need to Address



- ► The vehicle network has to provide higher bandwidth BUT preserve the low-latency, deterministic time communication AND keep the wiring cost as low as possible
- Compression is key decrease power & cost for data communication and storage
- ADAS systems rely on video that not only needs higher bandwidth but also needs to be delivered with minimum latency and be of high quality under any lighting conditions
- Smart & connected sensors need to do some level of processing at the edge and rely low-power, secure embedded processors

Communications in Vehicle Networks Today & Tomorrow


Domain	main Latency		Network
Powertrain	< 10 us	Low	CAN
Chassis / Safety	< 10 us	Low	Flexray, CAN-TT
Body & Comfort	< 10 ms	Low	LIN, SENT, CAN
Driver Assistance & Safety	< 250 us to <1 ms	10-100Mbps per camera	Ethernet
Human-Machine I/F	<10 ms to < 100	Few Kbps to few Mbps	Ethernet, CAN

	LIN, SENT	CAN 2.0	CAN-FD	TTCAN	Flexray
Cost	Very Low	Low	Medium	Medium	High
Max. Bit Rate	20 Kbps	1 Mbps	10 Mbps	10 Mbps	100 Mbps
Messaging	Deterministic	Event Triggered	Event- Triggered	Event & Time Triggered	Event & Time Triggered

TSN Ethernet is the new technology that enables low-cost, high-bandwidth, low-latency communications with traffic shaping capabilities able to accommodate all automotive requirements.

CAST CAN2.0/CAN-FD IP Core

Survived three CIA Plug Fests

- In production use
- Most Highly Featured CAN core in the market
- Reference design& sample drivers for easy evaluation and integration

CAST TSN Ethernet Subsystem

AXI4-Lite or

Avalon-MM

AXI-Stream or Avalon-ST

AXI-Stream or

Traffic Shaper

IEEE 802.1Qav & IEEE 802.1Qbv

Time Sync

IEEE 802.1AS

Eases the implementation of TSN ethernet endpoints.

Integrates hardware stacks:

Time Synchronization (IEEE 802.1AS)

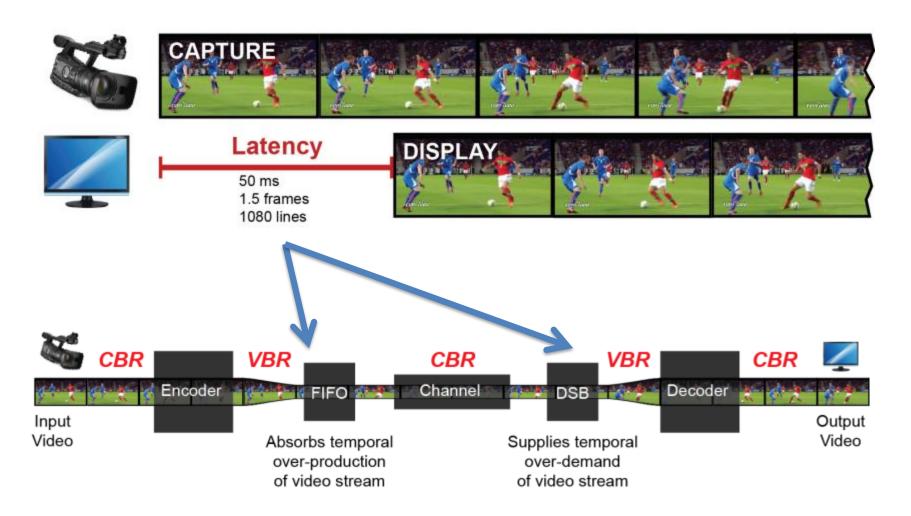
 Traffic Shaping/FQTSS (IEEE 802.1Qav and IEEE 802.1Qbv)

Ethernet MAC (Optionally)

- Requires minimum software support, enables ultra-low-latency communication
- Proven in IIC and LNI Plug Fests
- Can be integrated with UDP/IP hardware stacks, and/or low-latency compression cores

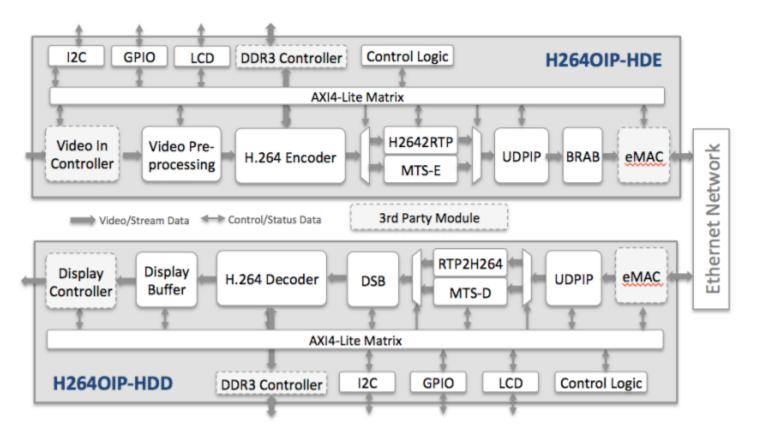
UDPIP Hardware Stack

- Hardware Stack Implementing in custom hardware UDP/IP, ARP, ICMP, IGMP, DHCP and supporting TSN Ethernet
- With NetCMD module enables remote access to any AXI/AHB address
- ✓ Minimize latency for streaming over Ethernet
- ✓ Operate without any software assistance
- ✓ Enables monitor and control over Ethernet


CAST GZIP Compression Cores

- ▶ Industry-standard for compressing sensor and other data, either on the application or on the file-system level
- Configurable to adopt to different needs:
 - Throughput-optimized versions provide over 100GBps
 - Size-optimized versions for 100K gates.
 - Latency-optimized version, have <100 cycles latency
- Allows better utilization of available network bandwidth
- Optimizes cost of local storage

Automotive Video Challenges



Real-time Response — Live video streaming requires system low-latency

CAST Video Over IP Subsystems

H.264 and MJPEG video-over-IP sub-systems with deep sub-frame, end-to-end latency

CAST WDR/HDR

- Essential for machine vision in vehicles
- Improves image quality to create clear and sharp images under any lighting conditions.
- Processes the merging of 2, 3 or 4 exposures and provides tone mapping, white-balance adjustment, back correction and 2D noise reduction filter

CAST Processors

CAST 8051 and BA22 32-bit processors currently used in many automotive sensor products:

- ▶ 8051: Small, low-power
- ► BA20/21/22: 32-bit embedded processors
- Geon Secure Execution Processor: BA22 enhanced with advanced security features
 - Protects sensitive code and data during execution, storage, and transfer to/ from the processor
 - Uses two or more cryptographically isolated secure execution contexts

