Customizing Future Low Power IP Innovation

Tony Stansfield
CTO

When Power is Paramount
Overview

- Headquartered Sheffield (UK)
 - Design Centres Sheffield & Leuven
- World class SRAM development team
- Industry leading low power SRAM technology
- Technology scales to (at least) 7nm FinFET
- Patented and silicon proven
- Power is the #1 issue for many markets
- sureCore meets AI, ML, IoT, Wearables & Medical low power memory needs

New & Evolving Markets Demand Power Efficient IP
“With low voltage, the first limitation customers are aware of is the lack of SRAM IP” - Rainer Herberholz, Director Emerging Technology, ARM
– SRAM Characteristics - Power, Performance, Area
 – Traditional compilers “High Density” or “High Speed”
 – sureCore focus is “Low Power”
 – Implemented by powerful in-house compiler technology

– Disruptive Low Power Memory Architectures
 – Process-independent optimisation
 – Based on foundry bit cells & standard processes
 – Augmented by enhanced low power verification methodologies
 – Industry leading tooling delivers flexible characterization solution
Market Leading Products

- **“EverOn” Product Family**
 - Single port ultra wide operating voltage range SRAM
 - Silicon proven
 - V_{nom} to near threshold operation (0.6V)
 - Available in 40ULP, 28HPC+, 22ULL

Near Threshold Operation is Unique in the Industry

- **“PowerMiser” Product Family**
 - Low Power, saves >50% dynamic power, >20% static power
 - Compared to foundry & leading industry providers
 - Demonstrated in 28FDSOI & 40nm Bulk CMOS
 - Available in 28FDSOI, 28HPC+, 22ULL

Offers Compelling Dynamic & Static Power Savings
Power Savings:
PowerMiser: 20% Standby, 55% Dynamic Power
EverOn: 60% Standby, 40% Shutdown, 60% Dynamic Power (@0.7V)
Challenge: Deliver Shrinking SoC Power Budgets

Off-The-Shelf SRAM IP Increasingly Misses The Target

It’s One More Headache For The System Architect
Challenges System Designers Face

• “We want to run at low voltage”

• “We need a multi-port RAM that runs at high speed, but with low power”

• “We want to put 10s of Mbytes on a chip, but the power looks prohibitive”

• “We need really low leakage”

All Real Problems With No Off-The-Shelf Solution
Multi-Port Example

- Full custom implementation
 - Tier-1 Comms Application
 - 16 FinFET Process

- Multi-port design
 - 1 Write Port, 8 Read Port
 - Double pumped

Key achievements
- >40% write power saving
- >60% read power saving
- Timing marginality >6sigma
- Achieved fmax >1GHz
- Met area budget
• ACSRAM – Custom Designed Memory Meets Your Requirements
 – Specifically tuned to application needs
 – Delivers optimal power profile & feature set

• Target Markets
 – Networking (down to 7nm)
 – Machine Learning/AI (Large memory subsystems – down to 7nm)
 – IoT/Medical/Wearable – Ultra Low Operating Voltage (Bulk/FDSOI)

• Engagement
 – System level review to understand feature set & power profile
 – SRAM specification preparation - agreed with customer
 – Compiler or Instance development
 – Test chip development & characterisation service
Summary

- **Industry Leading Ultra Low Power SRAM IP**
 - Dynamic power savings exceeding 50%
 - Near Threshold, Ultra Low voltage operation (down to 0.6V)
 - Silicon Proven
 - PowerMiser & EverOn standard products available NOW

- **Application Centric SRAM Development**
 - SRAM power is critical to your system power budget
 - You have a specific feature set allowing system level optimization
 - You need best-in-class static and dynamic power performance
 - You need low-voltage operation

ACSRAM – Meet Tomorrows Power Targets Today
Questions?

Contact: tony.stansfield@sure-core.com

When Power is Paramount