More Than Just eFlash
A Roadmap of How MRAM Will Change SoC Architectures
• For many years, MRAM has been “right around the corner.” Its been billed as:
 ▪ SRAM killer
 ▪ eFlash replacement
 ▪ Enabler of instant on computers

• At least 3 major foundries are preparing to bring eMRAM into production
 ▪ Production expected by end of 2018
 ▪ Currently 28nm/22nm; roadmaps for 14FF/12FF and below

• So how exactly will MRAM fit into SoC architecture initially and as the technology continues to evolve?
Comparison Overview

• Speed typically 10-100x faster than eFlash while still 2-10x slower than SRAM

• Active power typically 10-50x lower than eFlash
 ▪ 2-4x higher than SRAM for Read
 ▪ 4-200x higher than SRAM for Write

• Standby power near zero
 ▪ No bitcell current unlike SRAM
 ▪ Core voltage only reads unlike eFlash

• Significantly lower cost than either memory
 ▪ ~½ the area of SRAM
 ▪ Lower wafer cost and as much as 5x smaller than eFlash

<table>
<thead>
<tr>
<th></th>
<th>SRAM</th>
<th>MRAM</th>
<th>eFlash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Time</td>
<td><1-2ns</td>
<td>2.0-20ns</td>
<td>10-100ns</td>
</tr>
<tr>
<td>Write Time</td>
<td><1-2ns</td>
<td>10-1,000ns</td>
<td>10us-10ms</td>
</tr>
<tr>
<td>Read Power</td>
<td>0.1-0.4 uA/MHz/b</td>
<td>0.2-2.0 uA/MHz/b</td>
<td>1-100 uA/MHz/b</td>
</tr>
<tr>
<td>Write Power</td>
<td>0.5-2.0 uA/MHz/b</td>
<td>2.0-400 uA/MHz/b</td>
<td>100-2000 uA/MHz/b</td>
</tr>
<tr>
<td>Stdby Power</td>
<td>High</td>
<td>Low</td>
<td>Med / Low</td>
</tr>
<tr>
<td>Process Cost</td>
<td>Baseline</td>
<td>5-10%</td>
<td>15-25%</td>
</tr>
<tr>
<td>Area</td>
<td>6T + low overhead</td>
<td>2T + mid overhead</td>
<td>2T-10T + high overhead</td>
</tr>
</tbody>
</table>
Cost Advantages: Displacing eFlash

• Preliminary driver of change is cost
 ▪ 15-20% cost reduction expected (within scaling trend)
 > ~10% wafer cost reduction due to larger geometry, backend layers
 > ~5-10% die size reduction, depending on ratio of die spent on eFlash / MRAM

• Reduced cost/bit will shift boundary for internal / external NVM usage
 ▪ Power savings
 ▪ Board route reductions
 ▪ Fewer pass-through costs
Performance Implications: MRAM v SRAM

- **Store&Download Schemes Unnecessary**
 - 2-4x Speed / Power of SRAM with no idle power
 - Savings can enable larger XIP area

- **L3 Cache**
 - Bit-Alterable design enables SRAM-type usage
 - No idle power
 - Area / Power savings can enable larger cache

- **L2 Cache**
 - IoT and other power sensitive applications will benefit
 - Performance differences will make this a tougher boundary to cross

- **L1 Cache / Main SRAM**
 - Low duty cycle applications (e.g. remote sensors)
 - “Instant On” valued over performance; NVM nature preserves state of cache when off
 - Limited application expected
• eFlash has run ~3 technology generations behind logic
 ▪ While some announcements have been made for 28nm eFlash, most foundries indicate that 40nm will be the last node

• MRAM will intersect on this same trend line, but accelerate from there
 ▪ 2nd generation MRAM should shave 2-3 years off this trend
 ▪ 3rd generation MRAM should be just 1 year behind the logic process
• 2018 will see the first broad availability of MRAM from major foundries

• Whether your priorities are cost, performance, or time to market, MRAM can enhance any SoC architecture

• Numem is ready to help companies lead in MRAM deployment
 ▪ Over 45 years of experience in MRAM design
 ▪ Leading edge density, performance, and power
 ▪ Focus on helping customers bring their products to market