Multi-Processing on Small FPGA’s

Introduction

A Bit of Background

Core Concept

Programmer’s View
Multi-Processing on Small FPGA’s

A Bit of Background

What is small?

Altera MAX 10© 10M02
2000 4 input luts
2000 FF’s
12KB Memory
$2.84 Quantity 1000
Multi-Processing on Small FPGA’s

A Bit of Background

What kind of multi-processing?

14 8 Bit Processors
333 MIPS Aggregate
No Memory Conflicts
Multi-Processing on Small FPGA’s
A Bit of Background

Speed is determined by time to access memory.

Memory can be read in the Max10© 10M02 in 3 ns so an instruction can be read 333 million times per second giving 333 MIPS.
Multi-Processing on Small FPGA’s

A Bit of Background

How?

SuperCore
Multi-Processing on Small FPGA’s Core Concept

A core computer consists of a set of hardware that contains a set of registers and logic that manifest a single processor computer.
Multi-Processing on Small FPGA’s Core Concept

A super core computer consists of a similar set of hardware that contains virtual sets of registers that can manifest from 1 to thousands of processors.
Multi-Processing on Small FPGA’s

Core Concept

A super core register set.

This is the essence of a processor.

There are many of these in a super core.
Multi-Processing on Small FPGA’s Core Concept

With each clock tick, the processor bits move from register to register.
Multi-Processing on Small FPGA’s

Core Concept

As the processor bits move from stage to stage they encounter logic.
Multi-Processing on Small FPGA’s

Core Concept

Each stage handles part of the processing task.

Decoding of all processor instructions happens at the same time.
Multi-Processing on Small FPGA’s
Core Concept

That’s It

On to Programmer’s View
Multi-Processing on Small FPGA’s
Programmer’s View

Instruction structure

Always 4 bytes

OPCODE OPERAND A, OPERAND B, OPERAND C
Multi-Processing on Small FPGA’s
Programmer’s View

Note, operands are not registers but addresses in memory

The programmer is not aware of registers but manipulates memory directly
Multi-Processing on Small FPGA’s
Programmer’s View

As operands consist of 8 bits, there are bank instructions that enable each operand to extend memory range.

BANK BANK A, BANK#, NULL
ADD A, B, C
Multi-Processing on Small FPGA’s
Programmer’s View

A Jump is sensitive to Processor ID (PID).

JMPONPID (PID#, BANK#, A);
Multi-Processing on Small FPGA’s
Programmer’s View

Note, all processors access memory simultaneously.

So we have Mutex
GATECLOSE
GATEOPEN
Multi-Processing on Small FPGA’s
Programmer’s View

When execution begins.

The first 14 locations in memory would be
JMP Some Address.
Multi-Processing on Small FPGA’s

Programmer’s View

The unique structure requires concepts that are a bit different from normal. Those shown represent a few of the different approaches.
Multi-Processing on Small FPGA’s

----- THE END -----

Thanks for watching.