Embedded Analytics and Automotive Security

Aileen Smith
Chief Strategy Officer
Corporate Overview

- VC-funded start-up
 - Recently completed round D ($6M)
- Founded 2009
- Headquarters in Cambridge UK
- 44 patents
- New Chairman October 2017
 - Alberto Sangiovanni-Vincentelli
- Industry leaders adopting UltraSoC
- Silicon-proven with multiple customers
Actionable Insights across the whole SoC

UltraSoC delivers actionable insights

With system-wide understanding

From rich data across the whole SoC

UltraSoC enables full visibility of SoC

5 April 2018
A coherent architecture to debug, develop, optimize & secure

- Full SoC visibility, HW & SW
- Support all architectures: Freedom of IP selection
- Real-time & non-intrusive
- Advanced analytics & forensics
- “in life” analytics & SLA compliance
- Supports Functional Safety
- Supports Bare Metal Security™
• Analytics subsystem running continuously, analysing, monitoring for safety and security, reconfiguring H/W parameters as required
 • AI/ML algorithms define “normal” SoC behaviour and identify deviations from the norm
• Hardware resources are configurable at runtime
 • Allows reuse of hardware resources for different scenarios and different algorithms
• Security and safety of systems
• Hardware provides data so CPU load is small
• Fastest speed of detection
Bare Metal Security: a different layer

- Re-use the logic for debug
 - “Is the system operating as expected?”
- Hardware-based, under the OS
- Completely independent monitoring system
- Invisible to main system
- Very hard to detect or subvert
- Consistent and integrated with functional safety
- Supports requirements of SAE 3061 cybersecurity for automotive
- Complements other security architectures
 - “intruder alarm” versus “lock”
SAE J3061 Cyber Security for Automotive

- SAE J3061 and ISO/SAE 21434 - Cybersecurity Guidebook for Cyber-Physical Vehicle Systems
 - Tailors a cybersecurity process framework from the ISO 26262 process framework
 - Cybersecurity and functional safety share parallel processes
 - Threat analysis and risk assessment vs hazard analysis
 - Attack tree analysis vs fault tree analysis
 - Cybersecurity countermeasures should be consistent with safety measures and safety mechanisms
 - The cybersecurity and functional safety teams need to interact
 - Implies need for hardware elements for cybersecurity

- UltraSoC monitors can support both safety and cybersecurity
UltraSoC in Automotive

Resilience

i) the ability to maintain a core purpose or

ii) the ability to restore core purpose in the face of a disruption

- Partner with ResilTech (Italy) who are leaders in this space and consult on ISO 26262
- Partner with Moortec (on-chip PVT sensors) for resilience checking e.g. load balancing based on temperature

Security – Real-time monitoring
- Challenge Response
- Authentication
- Alarm Function (hacking, intrusion)
- UltraSoC provides Bare Metal security as well as message encryption
- Interaction between software and existing hardware (post silicon).
- Ensure software updates do not have a negative effect on system integrity

Safety – Real-time monitoring
- Hardware monitoring that system is working within limits
- Hardware monitoring to warn that system is working outside limits
- UltraSoC can be used to monitor Data Corruption or implement Lock-Step

5 April 2018
Example 1 – Non-intrusive performance optimization

Fastest time to detection

5 April 2018
Example 2 – Hardware layer security

Check accesses to E-Fuse and Key Store

Use Bus mon 1’ to capture accesses to the E-Fuse and Key Store entities

```
if <Address> >= MemAddressL && <Address> < MemAddressH
    && NOT (<Id> >= IdL && <Id> <= IdH)
then if Count > 0
    CaptureTrace()
    SendEventMessage()
else
    IncrementCount()
fi
```

Where:

- <> are Interconnect fields being observed by the bus monitor.
- CaptureTrace() puts the transaction into the trace buffer
- SendEventMessage() is an instruction to the monitor to send an event out on UltraSoC’s message bus
- IncrementCount increments the counter by 1 (allows for BootRom access)

NB This is pseudo-code actual filtering is in hardware and not software

5 April 2018
Example 3 – Non-intrusive “stuck pixel” detection

Fastest time to detection

Incoming image

Detected stuck pixels

From file: frame: 3

frame: 3
Conclusions

UltraSoC Security & Embedded Analytics

• The only commercial heterogeneous solution
• Non-intrusive, wire-speed monitors
• Integration Simplicity

• Enables in-life monitoring and fastest detection
 • Reliability, Compliance & Bare-Metal Security™
Contact details:

Aileen Smith
aileen.smith@ultrasoc.com
www.ultrasoc.com
@UltraSoC