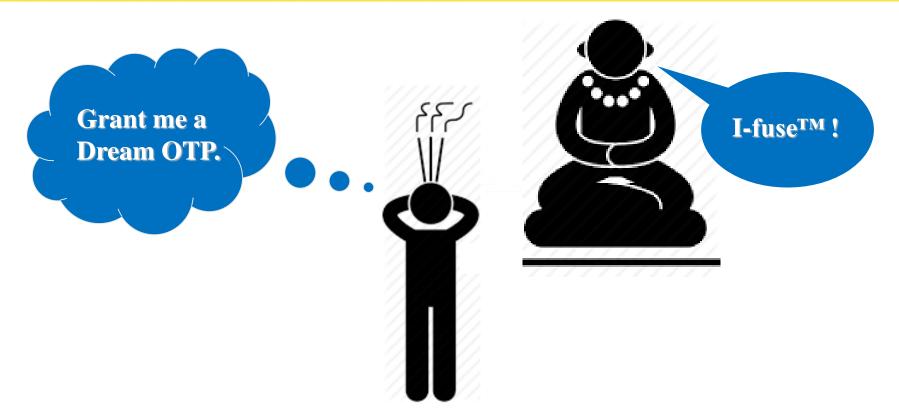


I-fuseTM: Dream OTP Comes True 创新熔絲TM: 美梦成真

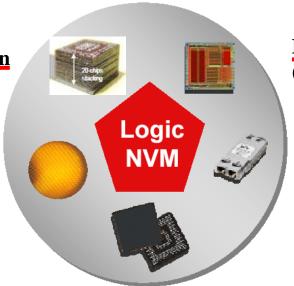

Shine Chung Chairman, Attopsemi Technology

15F-1 No. 118 Ciyun Rd, Hsinchu, Taiwan 300-72 886+(3)666-3150x211, 886+920-566-218

IP-SOC China, Sept. 2019

OTP IP: Dream Comes True

OTP: One-Time Programmable


OTP Applications

- OTP: a memory IP programmable only once to keep data permanent
- OTP allows each IC to be modified after fabrication without any costs
 - Customize data, fix defects, and trim statistic variations, etc.

Product feature selection

3D IC repair Memory redundancy (replace laser fuse)

Chip ID, Security Key, IoT

MCU code storage (replace flash)

Device trimming / calibration (eliminate EEPROM)

Defying Conventional OTP Wisdom....

- **OTP: NVM mechanisms**
 - Break fuse, Rupture oxide, or trap charges in floating gates
- Revolutionary I-fuseTM: True logic device
 - Non-breaking I-fuseTM prevails breaking eFuse
 - Best OTP in size, PGM/read voltage/current, temperature, reliability, testability

Non-break fuse

Deterministic

≤0.6um
<0.01ppm defect

No problem

Break fuse

Explosive

 \leq 0.18um

29ppm defect

Grow back

Rupture oxide

Explosive

 ≤ 0.18 um, ≥ 14 nm = 10ppm defect

Self-healed

Trap charges

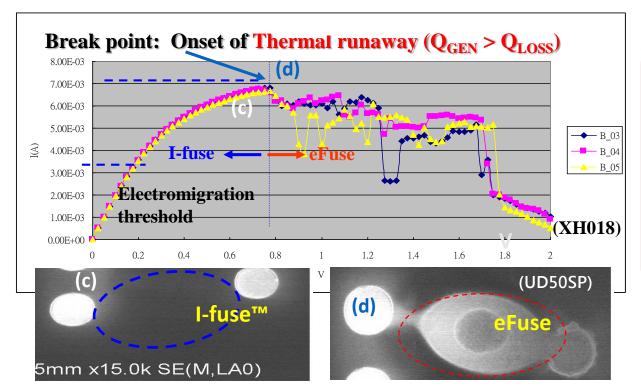
Statistical

 \geq 0.35um, \leq 0.6um 100ppm defect

data retention

I-fuseTM: Best OTP Figure of Merit

- Foundry independent
- Program mechanism
- Small size
- Robust OTP tech
- Low PGM voltage
- Low read voltage
- Low read current
- Wide temperature
- High reliability
- Full testability
- High data security
- Short PGM time


- *No mask/step; no hidden layers
- *True electromigration; based on physics
- *No charge pumps; low PGM current
- *PGM resistor, not MOS
- *Current programming, not voltage
- *No HV device; sub-VDD readable
- *Logic device sensing; for energy harvest
- *Less damage to fuse; for automotive
- *Program below thermal runaway
- *Non-destructive PGM state for thorough tests
- *Less damage; unhackable OTP key in stdcell lib
- *No read-verified write; temp-assist EM
- Applications: Al, IoT, Automotive, Industrial, communication

The only OTP programming mechanism can be modeled by physics: heat generation, heat dissipation and electro-migration

I-FuseTM vs. Efuse Programming

- I-fuseTM: non-explosive fuse; Guaranteed reliable by physics
- eFuse: explosive fuse => create debris => grow back

Power devices should not operate in thermal runaway.
So shouldn't programming a fuse this way.

I-FuseTM, eFuse, and Anti-Fuse (AF)

- I-fuseTM at 22nm (Attopsemi, IEEE S3S conf., 2017-2019)
 - **256Kb** programmed w/1.0V, 1.0mA, for 1-10us, 0.788um2 cell, AE=50%
 - Pass 250°C HTS for 1Khr (PR w/GF, Nov. '18, <u>IEEE S3S '19</u>)
 - 0.4V/1uA read for battery-less IoT (PR w/GF, Nov. '18, IEEE S3S '19)
- **■** Efuse
 - @28nm, UMC, Cu fuse (IEEE IITC/MAM 2011)
 - Need >30mA to program
 - Hard to pass @150oC HSTL for 168hr
 - @28nm Intel, metal fuse (IEEE JSSC 4/2010, VLSI Cir Symp. 2009)
 - "read current is only 1/250 of program current". 100uA =>25mA
 - @22nm FinFET Intel, metal fuse (VLSI Tech Symp. 2015)
 - 16.34um2 cell, charge pump, 1.6V PGM, 50us, 5x16 array, 0.9V read.
- Anti-Fuse (oxide breakdown)
 - @40nm need 5V (G), 6.25V (LP) to program (Kilopass, MPR 6/2010)
 - @32nm HKMG need 4.5V/200us to program (Intel, VLSI Cir Sym., 2012)
 - @14nm FinFEF need 4.0V to program (GF, VLSI Tech Sym., 2014)
 - @10nm FinFET needs 5.4V to program, AE=2.4% (TSMC, ISSCC 2017)

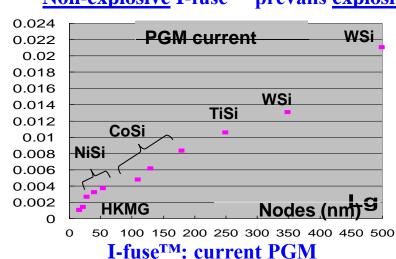
efuse vs. I-FuseTM

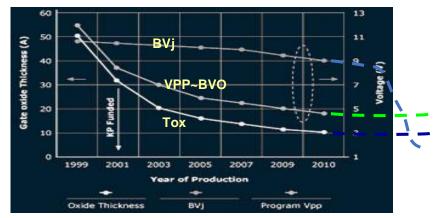
- Revolutionary I-fuseTM fixes all problems in eFuse
 - Reliability & qualification guaranteed by physics
 - Robust OTP technologies NOT to cause any problems

28nm and beyond	eFuse*	I-fuse TM
Program current	Up to 100mA	<3mA
HTS qual	4Kb passed 125°C 1Khr with 2 cells per bit	256Kb passed 250°C 1Khr without any redundancy
Read time in life	< 1sec	Unlimited read time
Program yield	A few % loss	~100%
Scalability	NO	YES
Testability	NO	YES. Achieve ZERO defect

^{*} Customers testimonies

Beyond 28nm: I-FuseTM vs. Anti-Fuse (AF)




- **■** Fuse narrower => PGM current lower
- Low PGM current => low PGM volt.
- Fuse PGM scalable to 5/3/2/1nm
- Non-breaking I-fuseTM wins eFuse

- Supply voltages lower and lower
- Oxide/PGM voltage can't scaled and reduced
- Device breakdown before oxide
- AF Hard to work beyond 14/16nm

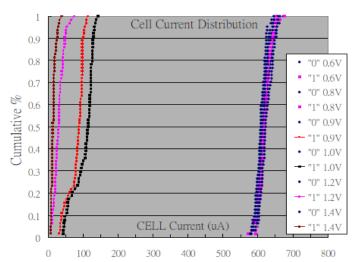
Fuse <u>current</u> programming prevails AF <u>voltage</u> programming !!!

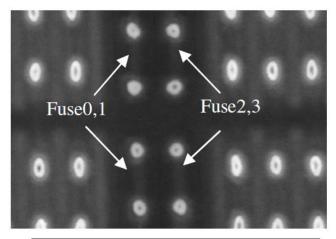
Non-explosive I-fuseTM prevails explosive eFuse !!!

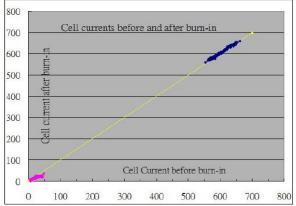
BVJ/BVO: Breakdown voltage of junction/oxide

Anti-fuse: voltage PGM

Low Voltage/High Density I-fuseTM IP




- 1R1T: Low Program Voltage (LV)
 - T40G: PGM 1.15V+/-5%, core VDD=1.1V
 - T22ULP: PGM 1.1V+/-5%, core VDD=0.8V
 - GF22 FDX: PGM 0.8V+/-5%, core VDD=0.8V
- 1R1D: High Density (HD)
 - 0.18um: PGM 3.9V+/-5%, Area: 1/4~1/5 of LV IP
 - 0.13um: PGM 3.6V+/-5%, Area: 1/4~1/5 of LV IP
 - 40nm: PGM 2.9V+/-5%, Area: 1/4~1/5 of LV IP
- Ultra-low Energy Read
 - 1/100 read energy for energy harvest (0.4V/1uA read @GF22)
- Many 1st tier customers: 15 in sensor/MEMS/PMIC out of 30 worldwide
- Sub-16nm FinFET nodes: Silicon in Q1 2020

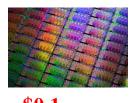

I-FuseTM 4K8 Macro at 22nm CMOS

- 4K8 I-fuseTM (IEEE S3S Conf 2017-2018)
 - Small 1R1T cell: 0.744um2
 - Small 4K8 macro: 0.0488mm2
 - 1.0V~1.45V program voltage
 - <1.4mA program current</p>
 - High data security
 - High reliability: 150°C HTS, 125°C HTOL

0.4V/1uA Read @22nm CMOS

- Battery-less RFID needs 128b OTP for authentication
 - Low voltage: 0.4V, rectified from antenna receiver (0.8V nominal VDD)
 - Low current: 1uA, source power from antenna coupling
 - High reliability: secured key stored in OTP for authentication
- I-fuseTM 64x1 OTP worked 0.4V/1uA @22nm CMOS--- The only OTP in the world.
 - Cell: low program voltage allows reading at 0.4V
 - Peripheral: ultra-low current sensing to achieve 0.4V/1uA:
 - Not MOS as amplifier: need to bias in high gain region
 - Not Inverter as amplifier: need post-program resistance >100K ohm
 - Novel sensing techniques never used in memory designs
 - Press released w/ GF and Fraunhofer IPMS on Nov. 19 2018
 - To be published in IEEE S3S Conf. Oct. 2019

I-FuseTM in Standard Cell Library

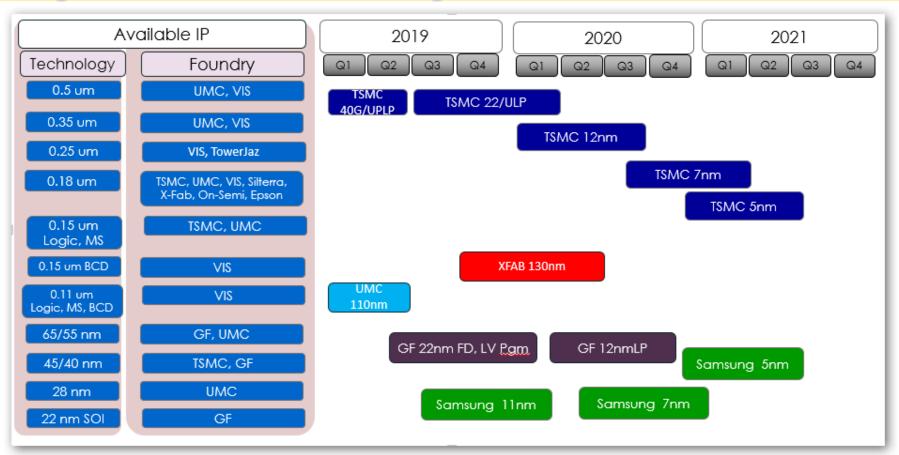


- Build I-fuse[™] bit-slice in any standard cell library
 - Meet standard cell library formats and design/layout guidelines
 - Write Verilog model to synthesize any low bit-count I-fuseTM OTP
 - P&R I-fuseTM OTP macros with the rest of circuits
- New Applications: security key and trimming-in-place
 - OTP key built by random logic can be very secured than OTP memory
 - Trimming-in-place: Store tuned data locally
 - Tune and store SRAM wordline width in each block
 - Save up to 30% of 4Mb SRAM current without speed degradation
 - Silicon on UMC 28HPC+ will be back and under test
 - Tune and store FBB/RBB bias locally in each voltage island
 - Unique FD-SOI features to trade performance vs. leakage
- Pre-requisite
 - I-fuseTM needs no high voltage, and no charge pumps

I-FuseTM: ZERO Defect

- Field return is very costly
 - 10x costs from wafer sort, packaged chip, module, PCB, to system
- ZERO defect after shipping
 - Defects should be found out and screened before shipping
- I-fuseTM can achieve ZERO defect
 - OTP dilemma: fully tested before shipping; but can't be used any more
 - Guarantee cell programmable: if initial fuse resistance $<400\Omega$
 - Guarantee 100% programmable: if programmed within specs
 - Fully testable: every functional block, including program circuits
 - Create non-destructive program state to read 1 for complex tests
 - Concurrent read with low-voltage fake programming

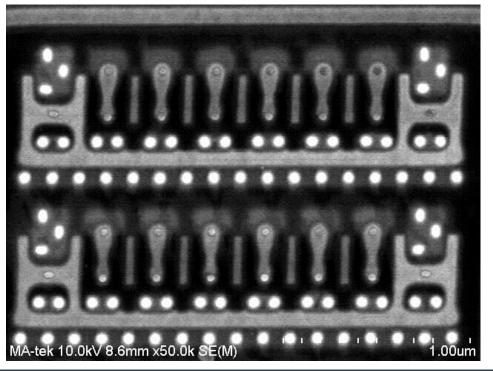
I.


\$10

\$100

\$1000

Attopsemi Product Roadmap



I-fuse: High Security to Hide Data

- Which I-fuse(tm) has been programmed? (GF28nm)
 - Enhanced: Lightly program to 1K, not 2K, to create less damages*
 - Enhanced: Lightly program virgin fuses, but read 0, to hide data states*

Conclusions

- Revolutionary I-fuseTM concept: logic device, not NVM
 - High quality and reliability guaranteed by physics
 - Program behavior can be modeled in HSPICE or Verilog-A
 - Synthesized in standard cell library like flip-flops
 - Low program voltage/current: 0.9V/1.4mA
 - Low read voltage/current: 0.4V/1uA
 - High reliability (defect <0.007ppm)
 - No charge pumps.
 - Cell/IP scalable with Moore's law
 - **■** Fully testable: for ZERO defect
 - Pass 250oC 1Khr HTS
 - High data security
- I-fuseTM: the dream OTP comes true
 - I-fuseTM is a logic device. Doesn't need to be qualified like an NVM
 - Save tremendous amount of time, costs, and efforts to industry !!!

Backup

The Team

- **Founder: Shine Chung**
- **■** Harvard graduate in Applied Physics
- 30 years of IC design experience
- Memory design in AMD, Intel, and HP
- PA-WW architect (PA-WW: precedent of Intel's Merced)
- Director at TSMC (eFuse pioneer)
- VLSI and ISSCC technical committee for 4 years
- **■** Two-time TSMC innovation award recipient
- 61 patents granted before Attopsemi
- Filed >70 U.S. patents and >60 granted after Attopsemi
 - Co-founder & VP of Eng: WK Fang
 - MSEE from Ann Arbor, U. of Michigan
 - 20-year experiences in memory
 - **■** Technical Manager at TSMC
 - Department Mgr for eFuse
 - Design managers for N90/N65 SRAM TV, eDRAM
 - MTS in SRAM, FIFO, CAM at IDT

Thank You

OTP: One-Time Programmable IP

