
Enabling System Level Design 1

Open Source Virtual Platforms for SW
Prototyping on FPGA

Mark Burton

F1

Enabling System Level Design 2

Deep Learning Accelerator

•  Nvidia has a Deep Learning Accelerator (called NVDLA)

•  Nvidia also has a ‘c’ model of the DLA architecture (could be used as a systemc/tlm model)

The NVIDIA Deep Learning Accelerator (NVDLA) is a free and
open architecture that promotes a standard way to design deep
learning inference accelerators. With its modular architecture,
NVDLA is scalable, highly configurable, and designed to simplify
integration and portability. The hardware supports a wide range
of IoT devices. Delivered as an open source project under the
NVIDIA Open NVDLA License, all of the software, hardware, and
documentation will be available on GitHub. Contributions are
welcome

Enabling System Level Design 3

Turing Lecture 2017 : Hennessey and Patterson

https://www.youtube.com/watch?v=3LVeEjsn8Ts

Enabling System Level Design 4

Goals

•  Bring HW and SW together
•  Minimize time to re-spin

•  (change in HW/change in SW)

•  Enable simulation to be used by anybody
•  Make it easy and quick to use

•  Make the simulation FAST
•  Enable S/W development

Enabling System Level Design 5

Virtualization

Emulation

Virtual Platform
Virtualization

(Para-)Virtualization

Hardware

Algorithm execution
Or full system virtualization

Application
O/S

Virtual platform
(model)

‘real
binary’

Full binary execution
on virtual

platform (model)

Application
O/S

FPGA

Full binary execution
on REAL

platform (FPGA)

Application
O/S

Hardware

Full binary execution
on

Final Hardware

Enabling System Level Design 6

Virtualization

Emulation

Virtual Platform
Virtualization

(Para-)Virtualization

Hardware

Algorithm execution
Or full system virtualization

Application
O/S

Virtual platform
(model)

‘real
binary’

Full binary execution
on virtual

platform (model)

Application
O/S

FPGA

Full binary execution
on REAL

platform (FPGA)

Application
O/S

Hardware

Full binary execution
on

Final Hardware

Enabling System Level Design 7

Open Source SystemC Standard

Virtual Platform Standard is SystemC TLM-2.0 IEEE 1666

•  Open Source Simulator available for download from Accellera.org

Corporate members 2016
•  GreenSocs technology at the heart of TLM-2.0 standard.
•  All GreenSocs interfaces use TLM-2.0
•  GreenSocs helping Accellera forge a new Model to tool standard.

•  Preview available in GreenConfig.

•  Our solutions are tool independent, and work with all vendors.

Enabling System Level Design 8

Qemu: Our Preferred source of CPU models

•  Qemu is the defacto standard Virtualizer.
•  Free and Open Source.
•  It is over 10 years old

•  GreenSocs is a key contributor:
 Reverse execution and Multi-Core TCG Kernel.

•  Regular committers from many organizations

18 1100 43000 1000 989,863
Architectures CPU’s Commits Contributors Lines of code

…

Enabling System Level Design 9

Existing Model database overview:

X86 ARM MIPS Alpha PowerPC SPARC Micro-
blaze

Cold-
fire

Cris SH4 Xtensa

Fast
SW dev
model
(LT)

✔ ✔ ✔

✔

✔

✔

✔

✔

✔

✔

Cycle
Accurate
HW dev
model
(AT)

✔

✔

✔

✔

CPU Family coverage:

Full list (of several hundred) available on GreenSocs.com

Enabling System Level Design 10

QBox

•  Wraps up Qemu in a TLM2-0 API such that it can be used in
standard SystemC

•  QEMU is a generic and open source virtualizer – it covers
almost all CPU architectures and achieves extremely high
performance.

SystemC

QBox
(qemu)

TLM

QBox

Enabling System Level Design 11

Qbox Syncronisation options

•  Real Time
•  Each simulator runs as close to real time as possible.
•  Can be simple “run as fast as you can”, no sync.

•  Windowed
•  Each simulator is allowed to run within a window, but if it

reaches the end, it must stop and wait
•  The window will automatically extend as simulators run.
•  (Windowed ‘behind’ to keep SystemC behind and the tlm

delta time positive)

•  Deterministic/single threaded
•  Each simulator runs in turn.
•  Pseudo random ordering to ‘catch’ S/W bugs.

•  (The advantage of a model…)

Enabling System Level Design 12

Extending Qemu for Zynq

Clock framework
•  Enable the correct timing for events across the full Zynq device.

Large packet DMA framework
•  Significantly increase the speed of DMA activity in the simulated

device.

Fault Injection
•  Model fault injection in a convenient and scriptable way, to enable

safety and test features to be validated.

Safety and Test Library extensions to devices
•  Model the suite of devices in the Zynq that can be self tested.

GreenSocs is the partner upstreaming their device
models

Enabling System Level Design 13

Extending Qemu Speed

MULTI Thread Qemu

•  A massive speed improvement for Qemu to take
advantage of multi-core hosts

1 0
10
20
30
40
50

1
V

C
P

U
s

2
V

C
P

U
s

4
V

C
P

U
s

1
V

C
P

U
s

2
V

C
P

U
s

4
V

C
P

U
s

Upstream MTTCG

1
2
4

Enabling System Level Design 14

Advanced features

•  NON-Deterministic Reverse Execution

•  Ability to debug from an error backwards,
 irrespective of input stimulus

•  Supporting

•  No H/W required, No ‘JTAG collector’ limit.

•  Cache modeling
•  Cache Coherency performance estimation
•  Cache flushing S/W checking

Enabling System Level Design 15

What’s OpenVP

•  User Application and user level
device code

•  Kernel and kernel modules

•  Virtual Platform model,
•  Based on QEMU and SystemC
•  ‘C’ model for NVDLA device itself

G
ue
st
	U
se
r	

Sp
ac
e

G
ue
st
	

K
er
ne
l	

Sp
ac
e

H
os
t	
U
se
r	
Sp
ac
e

H
os
t	

K
er
ne
l

A
W
S	
H
W
	a
nd
	F
P
G
A

CPU	Cluster	Model

NVDLA	FPGA	
Wrapper	Model NVDLA	CmodelMem	Model

KMD

Applications UMD

AWS	Kernel	Driver

AWS	Shell

NVDLA	

FPGA	Transactor

FPGA	DRAM

HW	Tests

FPGA	
Parser

AWS	Driver

NVDLA		device

QEMU	with	TLM2C

Enabling System Level Design 16

Problem

•  Simulation speed… the NVDLA – Accelerator – is modelled on
the host, so it will not ‘accelerate’.

•  Changes to the core NVDLA architecture require changes to
the model.

Enabling System Level Design 17

Adding FPGA

•  User Application and user level
device code

•  Kernel and kernel modules

•  Virtual Platform model, with FPGA
wrapper

•  AWS framework

•  NVDLA FPGA hardware module
•  Runs at full speed!

G
ue
st
	U
se
r	

Sp
ac
e

G
ue
st
	

K
er
ne
l	

Sp
ac
e

H
os
t	
U
se
r	
Sp
ac
e

H
os
t	

K
er
ne
l

A
W
S	
H
W
	a
nd
	F
P
G
A

CPU	Cluster	Model

NVDLA	FPGA	
Wrapper	Model NVDLA	CmodelMem	Model

KMD

Applications UMD

AWS	Kernel	Driver

AWS	Shell

NVDLA	

FPGA	Transactor

FPGA	DRAM

HW	Tests

FPGA	
Parser

AWS	Driver

NVDLA		device

QEMU	with	TLM2C

Enabling System Level Design 18

SPEED

•  SW on NVDLA C-Model
•  Anybody can download packaged Docker release
•  Configurable – build time ½ hour.
•  FAST TO SET UP.

•  SW on FPGA with NVDLA RTL
•  Anybody can run AWS env with pre-packages AMI and AFI
•  With AWS setup, easy to alter both FPGA images and associated

drivers. (e.g. less than a day).
•  FAST TO RUN.

Both available from nvdla.org

Enabling System Level Design 19

All the components…

QEMU TLM2C

Mem
Model

DLA
Cmodel

Enabling System Level Design 20

HW Test on FPGA

HW
Description

FPGA
Parser

FPGA
Driver AWS SDK AWS

FPGA

Why we need HW tests on FPGA

To guarantee the quality of FPGA release

To identify corner case and issues in RTL

Enabling System Level Design 21

Full S/W stack

•  Based on SW on Cmodel

•  Replace all Cmodels (NVDLA, Mem model) with FPGA
wrapper

•  Full user code executable on combined QEMU + FPGA model

UMD KMD QEMU FPGA
Wrapper

AWS
SDK

AWS
HDK

AWS
FPGA

Enabling System Level Design 22

Generalisation

•  Making this ‘generally’ applicable
requires more work L

•  Enable any architecture to be
modeled in a ‘cloud’ (public/
private), off-loading onto FPGA
when required/appropriate.

•  Enable ‘Virtulization’ when host/
guest match.

Enabling System Level Design 23

Future Possibilities

•  NVDLA Performance Model integration for Performance
evaluation

•  More AWS FPGA images release for different NVDLA
configuration

•  Enable RISCV in Virtual Platform
•  ARM Project Trillium
•  SiFive

Enabling System Level Design 24

More information:

www.greensocs.com
mark@greensocs.com

NVDLA page http://nvdla.org/

OpenVP Doc http://nvdla.org/contents.html

OpenVP Github page
https://github.com/nvdla/vp
https://github.com/nvdla/vp_awsfpga

