Optimizing The Silicon Porting Of Physical IP

Tony Stansfield – CTO
Premature Optimisation Is The Root Of All Evil

(attributed to Tony Hoare)
Corporate Overview

• Ultra Low Power/Voltage SRAM IP product supplier
• Custom, application-centric low power SRAM design services provider
• Innovative, patented, silicon validated architecture
• Proven in 40/28/22/16nm process nodes, scales to 7nm
• Solutions for AI, IoT, Imaging, Wearables applications
• Headquartered in UK - Design Centre in Sheffield
• Backed by investors Capital-E, Finance Yorkshire, Mercia Technologies, IMEC
• Member of RISC-V Foundation

New & Evolving Markets Demand Power Efficient IP
Market

SRAM Requirements

IoT
- Low Voltage, Low Standby Power
- Fast ‘Wake Up’, Scalable

AI/ML - EDGE
- Low Latency, High Performance
- Low Power Closely-Coupled Arrays

NETWORKS
- Low Dynamic Power, Extensible
- Advanced Nodes, Large Arrays

AR/VR
- Low Power, High Performance
- Large Burst-Mode Arrays
Different scaling for different components

High or low VT transistors

Change in relative RC effects

Changes in matching

- Especially important with small transistors (e.g. SRAM)
Delivers Robust & Reliable Memory Designs
Multi-Port Low Power SRAM
sureFIT – Design Example

- Full custom implementation
 - Tier-1 Comms Application
 - 16 FinFET Process

- Multi-port design
 - 1 Write Port, 8 Read Port
 - Double pumped

Key achievements
- >40% write power saving
- >60% read power saving
- Timing marginality >6sigma
- Achieved fmax >1GHz
- Met area budget
Does It Meet The Specification? (e.g. Leakage Optimisation)

- **Energy profiling**
 - Hierarchical decomposition of where leakage current is going
 - SRAM bit cell leakage is unavoidable
 - Easy to see where current is going ...
 - Then decide if anything can be done
Is It Reliable?
Monte Carlo Simulation

- Probe for issues in a design
- Edge rate on a node
 - Slowest is 1/6 the typical case
 - Is this a sign of a weakness?
- Voltages on a differential signal
 - Clear separation – good
Is It Reliable?
Monte Carlo Simulation

- Don’t need to know in advance which nodes to check
- Check every node in a design for:
 - Edge rates
 - Transition times
 - Voltage levels
- Screen for a large spread in the Monte Carlo simulation
High-Sigma Monte Carlo Simulation

- Circuit validation with the equivalent of millions or billions of Monte Carlo samples
 - i.e. can probe the extremes of possible process variation

- Useful when there are millions of instances of a component in a device
 - E.g. bit cells
Well understood, well characterised design

- Monte Carlo results feed into margins
- Understand worst-case process, voltage, temperature points
sureFIT Streamlined SRAM Design Methodology

Delivers Robust & Reliable (Not Just) Memory Designs
Application To Non-Memory IP

• The same SRAM optimisation and process migration approaches are portable to other mixed-signal designs
 – Component understanding and optimisation
 – Verification
 – Characterisation

• SureCore design and characterisation flows applicable to other IP:
 – Simulation, verification and characterisation environments are portable
 – Design and layout skills potentially allow us to fix any issues found
Can a logic design be pushed to a lower voltage?

• Which library cells are best to use?
 — Identify which cells show least variation at reduced voltage
 — Restrict synthesis to use these cells in normal flow

• What happens to a critical path?
 — When process variation is included

Moving an IP catalogue to a new process

• Quickly remap transistors in the netlist
 — Re-simulate to check functionality
 — Vary VT types to explore performance envelope
Summary

• “Optimizing The Silicon Process Porting Of Physical IP”

• Don’t optimize for a particular piece of IP or a particular process

• General techniques that are widely applicable mean that we can quickly investigate the behaviour of a wide range of IP on a wide range of processes
Thank You

Any Questions?