

Premature Optimisation Is The Root Of All Evil

(attributed to Tony Hoare)

Corporate Overview

- Ultra Low Power/Voltage SRAM IP product supplier
- Custom, application-centric low power SRAM design services provider
- Innovative, patented, silicon validated architecture
- Proven in 40/28/22/16nm process nodes, scales to 7nm
- Solutions for AI, IoT, Imaging, Wearables applications
- Headquartered in UK Design Centre in Sheffield
- Backed by investors Capital-E, Finance Yorkshire, Mercia Technologies, IMEC
- Member of RISC-V Foundation

New & Evolving Markets Demand Power Efficient IP

Technology Market Fit

Market **SRAM Requirements** Low Voltage, Low Standby Power IoT Fast 'Wake Up', Scalable Low Latency, High Performance AI/ML -**EDGE Low Power Closely-Coupled Arrays Low Dynamic Power, Extensible NETWORKS Advanced Nodes, Large Arrays** Low Power, High Performance AR/VR **Large Burst-Mode Arrays**

Process Porting And Optimisation

- Different scaling for different components
- High or low VT transistors
- Change in relative RC effects
- Changes in matching
 ©sureCore Ltd 2019
 - Especially important with small transistors (e.g. SRAM)

sureFIT Streamlined SRAM Design Methodology

Delivers Robust & Reliable Memory Designs

Multi-Port Low Power SRAM sureFIT – Design Example

- Full custom implementation
 - Tier-1 Comms Application
 - 16 FinFET Process
- Multi-port design
 - 1 Write Port, 8 Read Port
 - Double pumped

Key achievements

- >40% write power saving
- >60% read power saving
- Timing marginality >6sigma
- Achieved fmax >1GHz
- Met area budget

Does It Meet The Specification? (e.g. Leakage Optimisation)

Energy profiling

- Hierarchical decomposition of where leakage current is going
- SRAM bit cell leakage is unavoidable
- Easy to see where current is going ...
- Then decide if anything can be done

Is It Reliable? Monte Carlo Simulation

- Probe for issues in a design
- Edge rate on a node
 - Slowest is 1/6 the typical case
 - Is this a sign of a weakness?

- Voltages on a differential signal
 - Clear separation good

Is It Reliable? Monte Carlo Simulation

- Don't need to know in advance which nodes to check
- Check every node in a design for:
 - Edge rates
 - Transition times
 - Voltage levels
- Screen for a large spread in the Monte Carlo simulation

High-Sigma Monte Carlo Simulation

- Circuit validation with the equivalent of millions or billions of Monte Carlo samples
 - i.e. can probe the extremes of possible process variation
- Useful when there are millions of instances of a component in a device
 - E.g. bit cells

Characterisation

Well understood, well characterised design

- Monte Carlo results feed into margins
- Understand worst-case process, voltage, temperature points 13

sureFIT Streamlined SRAM Design Methodology

Delivers Robust & Reliable (Not Just) Memory Designs

Application To Non-Memory IP

- The same SRAM optimisation and process migration approaches are portable to other mixed-signal designs
 - Component understanding and optimisation
 - Verification
 - Characterisation
- SureCore design and characterisation flows applicable to other IP:
 - Simulation, verification and characterisation environments are portable
 - Design and layout skills potentially allow us to fix any issues found

Examples

Can a logic design be pushed to a lower voltage?

- Which library cells are best to use?
 - Identify which cells show least variation at reduced voltage
 - Restrict synthesis to use these cells in normal flow
- What happens to a critical path?
 - When process variation is included

Moving an IP catalogue to a new process

Quickly remap transistors in the netlist

©sureComulate to check functionality

- Vary VT types to explore performance envelope

Summary

- "Optimizing The Silicon Process Porting Of Physical IP"
- Don't optimize for a particular piece of IP or a particular process
- General techniques that are widely applicable mean that we can quickly investigate the behaviour of a wide range of IP on a wide range of processes

sureCore Delivers Robust & Reliable (Not Just) Memory Designs

