

Sowmyan Rajagopalan, Founder & CTO

Thalia Design Automation

Bluetooth IP Migration & Leveraging FDSOI Back Gate Biasing feature December, 2019

Analog IP Design – Decision fork

Design new IPs

- Address new sections of the market
- Increasing revenue
- Targeted customer base
- Exciting

Build a portfolio of analog IPs

Expand within the existing market Stabilise Increase revenue – widen the customer base

Not an Either-Or Situation

2 9 December 2019

Analog IP Reuse – Is it a myth ?

- Analog circuit design is impacted by a number of factor
 - Device performance,
 - Technology characteristics,
 - Functional requirements,
 - Design methodology
- Migrating an Analog circuit into a reduction of an existing IP custom requirements
 - Even a bandgap requires des on edo !!!
- Limited solutions in market and a shortage of good analog designers exacerbates the problem
- Is efficient Analog IP reuse a myth/dream ?

Thalia – Who are we ?

- Paradigm shift in how Analog IP is reused
- Thalia's unique Re-use Platform as-a-Service (Peral)
 - allows analog IP vendors to diversify their product r
 - optimize performance of new and existing IP;
 - and to quickly and efficiently serve man at a downatever their customers' choice of process technology.
- RePaaS addresses costomers analog and mixed signal design requirements by combining three sleptents – The Trifecta :
 - proprietary design automation technology that increases designer efficiency and improves quality of results;
 - innovative design methodology a design based approach rather than a CAD based or circuit synthesis;
 - and an experienced team with proven expertise in RF, analog and mixed signal design

Thalia Value Proposition

IP Migration Migrating Design across technologies

Thalia Unique Selling Point

Amalia[™] Technology

Automated Process Technology Analysis

- A design centric ap row h
- Mapping based not only on parameter names/values or callback limits
- Device level simulations to match Ft, Vth, gm, gm/ld, Vds-lds curves and other second order effects
- Circuits similar to base design post migration, comparable performance and hence lesser design iterations

Bluetooth IP Reuse & FDSOI Techniques

10 |

9 December 2019

Confidential

RCO

Process differences strikes back !!

- Vt of the nfet and pfet between the technologies were different
- Headroom pressure
- To maintain the required drive, the W of mirrors had to be increased (and L). Increased area
- So flipwell lvtfets were used and Vsb altered to reduce the

Design Example: RCO – Thalia's Solution

 Targeted automation to provide incremental time and cost savings – full automation doesn't work in Analog

13 9 December 2019

Business Value: Analog Migration

	Parameter Vdd temperature topinclude.scs	Nominal 900m 27 top_tt							5	51(O)/	7			
Test	Output	Nominal	Spec	Weight	Pass/Fail	Min	Max)))))))))))))))))))					
PVT	i_avg	245.7 uA	< 500		pass	119.8 uA	411.6 uA	~		UUU					
PVT	Duty Cycle Freq_low	50.43 %	range 40 60		pass	47.82 %	51.5 %		$(\bigcirc) \setminus \setminus$	1					
PVT	Duty Cycle Freq_high	49.51 %	range 40 60		pass	46.97 %	50.75 %	_A _	Pmeter	Nominal					
PVT	Frequency_Comp_f_high	26 MHz	range 13 52		pass	15.83 MHz	()MHz		Vdd	900m					
PVT	Frequency_Comp_f_low	15.18				9.235	GAL		temperature	27					
PVT	Startup time	29.94 ns	< 50		pass	0 ns 👌			topinclude.scs	top_tt					
							111	Test	Output	Nominal	Spec	Weight	Pass/Fail	Min	Max
						$ \land \land \land$	1-	PVT	i_avg	240.3 uA	< 500		pass	102.5 uA	414.2 uA
				\sim	$\left(\right)$			PVT	Duty Cycle Freq_low	50.66 %	range 40 60		pass	49.8 %	50.83 %
								PVT	Duty Cycle Freq_high	50.05 %	range 40 60		pass	48.34 %	50.05 %
			(PVT	Frequency_Comp_f_high	26.95 MHz	range 13 52		pass	15.29 MHz	42.33 MHz
					7 -			PVT	Frequency_Comp_f_low	15.52	-			9.387	24.56
								PVT	Startup time	16.79 ns	< 50		pass	10.47 ns	33.02 ns

- The circuit was migrated, simulated, design tweak applied and laid out.
- Design expertise along with Design methodology allowed Thalia to identify the right component

1

Rapid Analog Porting - Reuse Customer Examples

Classification	Examples	Redesir n Cycle Tir	Thalia's Cycle Time*		
Standard Analog IP	DAC, ADC, PLL	12-1 W PK 3 TEJ**	4-8 weeks [2 FTE]**		
Application Analog IP	Bluetooth, GPS/GLONAL		18-22 weeks [~ 6-7 FTE]**		
Application Analog IP	Du on WLN	>50 weeks [~ 6-8 FTE]**	22-28 weeks [~ 6-7 FTE]**		

(*) Elasped calendar time to Specification Compliant Design

(**) FTE : Full Time Equivalent

Timescales will be impacted by Circuit complexity and process node differences

Customer Testimonial

Kave Kianush, Catena Vice President and Chief Technology Officer

- "We're taking a new approach, which represents a fundamental shift in the way analog IP is created and delivered.
- Our relationship with Thalia helps us to deliver exactly the right feature and performance combination for our customers, against ever more demanding time-tomarket and cost requirements.
- Thalia's combination of novel design automation technology and analog design expertise is unique in the market.
- We've already seen a positive impact on our ability to deliver against tight customer deadlines."
- <u>https://www.thalia-da.com/catena-selects-thalia-da-to-facilitate-analog-ip-re-use/</u>

Summary: Re-inventing Analog Reuse

- RePaaS A platform that delivers efficient reuse of Analog IP
- Unique combination of Technology, Methodology and Design experience
- Reduced design cycle time and hence lower cost -> up to 50% time and cost savings
- Proven track record 22nm to 350nm; Samsung, TSMC, UMC, GF, Tower, SMIC, AMS, Tier 1 Technologies
- Direct application in migrating IPs Off the shelf IPs

Contact us sales@thalia-da.com