Platforms for SSD and IoT Applications

Amit Saxena, VP Engineering

4/9/2019
The Mobiveil Team

Vision
Provide Technology, Platform and value added services to develop storage solutions
- RTL IP
- FPGA Platform
- Engineering services for Custom Designs

Leadership
Management with 30+ years experience in Semiconductor/ Silicon IP/ Product Engineering Services
Team working together developing Silicon IP & Engineering Services for 15+ years
- Silicon valley “Fast 50” in 2018
- 2018 Inc. 5000 “Fastest Growing Private Companies in America”
- 10 Most Promising Solution Providers in Storage by CIO Magazine
- 4 Patents in Storage and Flash Reliability

Location
Headquarters in Milpitas, Engineering Centers in Chennai, Bangalore and Hyderabad. Total headcount ~225
Mobiveil Platform Focus Domain

Flash Storage
- Enterprise
- Data Centers
- Laptop/Consumer
- Mobile

AI/ML/IoT
- Data Centers
- Smart Cities
- Industrial IOT
- Consumer/Automotive

Communications
- Base Stations
- HPC
- Industrial
- Aerospace
Mobiveil Vision for Application Platforms

• What are platforms
 • Bundle of highly configurable Silicon IP blocks, Pre-integrated
 • Pre-validated FPGA platform
 • Operating Firmware
 • Pre-verified hooks to 3rd party IPs like Verification IP, PHYs
 • Pre-verified environment for the design flow like the Emulation

• Benefits of Platform
 • True acceleration of product development as much of the integration and verification is already completed
 • Reduction in cost and schedule, Product development risk minimized

• SSD Platform Example for customers developing SSD SOC
 • IP Blocks: PCIe Gen4, NVMe, DDR4, ONFI, LDPC, Custom Blocks
 • Xilinx/Intel FPGA based Hardware platform
 • Operating Firmware for ARM and RISC-V*
 • Hooks to Avery VIP
 • Standard Interfaces to PCIe, DDR4, ONFI PHYs
Understanding Our Customer’s Challenge

To enable early availability of IPs and Platforms

- Energy cost due to data movement will be comparable, if not more than the computing cost.

- Energy efficiency will become the primary metric for system design since we need to increase the computing power by 1000x with only 10x increase in the power envelope.

Energy

- Multi flash chip architecture accelerating SSD bandwidth while host I/F lags and CPU performance hits Moore’s Law

I/O Bottleneck

- Current direction is PCIe Gen 3→4→5
- More and faster pipes to bring data to the host

Challenges and Constraints

Compute and Storage Server Bottlenecks
- **IO Bottleneck**: Memory speeds >> host speeds
 - Increasing flash die further increasing memory speeds
- **Cycles and power** spent moving data from storage to server
 - IO power sending from storage to server for processing
 - Network and protocol overhead (NFS, iSCSI, rDMA, etc)
- **Power** for moving data within server
 - NIC → DRAM → L2/L1 cache → uP ... and back out
- **Inefficiency** → CPU and power to move “sparse” data

Network Bottlenecks
- **Power** increasing with more data and data movement
- **Latency and congestion** increasing
 - High data movement
 - Storage → compute → storage
 - Latency of on-chip buffering in switches and NICs
 - Over subscribed core → dropped packets and retransmission
- **Increasing data** driving bandwidth
- **Inefficiency** → High bandwidth to move “sparse” data
- Data overhead: NFS, iSCSI, security, etc

Analogy
- Current solution: build more roads, bigger roads, buy more gas
- Our solution: Enable People to work at home

Copyright Mobiveil, Inc.
Example - HPC Scientific Modeling Application

“Jaguar”
224,256 cores (1.75 petaflops)

240 GB/s total
= 1MB/s per core
10 PB storage

Data moved three times
1. Generate data
2. Analyze data
3. Update data

Power: 5-10 megawatts

Other Applications
- Climate
- Genetic
- Finance
- Security
- Medical
- Fraud
- Retail
- Automotive

Nearly 70% Power Savings Running on SSD vs Server

Data analysis using *spare cycles* of existing SSD controller
- Additional offload possible with optimized Storage IQ architecture
- Additional power savings if data is processed in DRAM before moving to flash

Observations:
- Nearly 70% power savings vs sending back to server: reduced IO, reduced re-read and re-write of data
- No performance impact: analysis runs in parallel with compute application running on server
- Many tasks possible to offload on SSD controller
- App performance will go down over time (i.e. as drive fills) due to garbage collection

Task throughput on SSD ARM Cortex A9 (bigger numbers are easier tasks)
- Statistics (mean): 416 MB/s
- Pattern Matching (grep): 123 MB/s
- Data formatting (transpose): 76 MB/s
- Compression (LZO): 41 MB/s
- Dim. reduction (PCA): 10 MB/s
- Edge detection (vision): 7 MB/s
- Compression (gzip): 4 MB/s
- Dedup. (Rabin fingerprint): 2 MB/s
- Clustering (k-means): 1 MB/s

Sparse Data Well Suited to StorageIQ SSDs

- Sparse data: Important but rare
 - Benign, 0s, empty cells, much can be ignored

- Processing sparse data
 - Divide and conquer large databases
 - Find interesting data and process further
 - Apache MapReduce, MPI, Dryad, Pregel, GraphLab, Piccolo

- Find interesting data using basic commands
 - Scan / filter / sort / group / hash
 - Eliminate trivial items
 - Compress (e.g., empty cells, 0s, etc.)
 - Clean / pre-process (e.g., normalize data, etc.)

- Numerous applications in machine learning and data management

<table>
<thead>
<tr>
<th>Security</th>
<th>Network intrusions, attacks, misuse traffic = small fraction of total network traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraud</td>
<td>Credit card, telecom, subscription, e-commerce, insurance fraud = small fraction of legit transactions</td>
</tr>
<tr>
<td>Medical</td>
<td>Tumorous pixels in overall image (“Video CoSeg”)</td>
</tr>
<tr>
<td></td>
<td>Medication errors (0.3% - 5%)</td>
</tr>
<tr>
<td></td>
<td>Adverse drug events (0.05% – 6.7%)</td>
</tr>
<tr>
<td></td>
<td>Infection analysis (5.9 of 1000 days)</td>
</tr>
<tr>
<td>Retail</td>
<td>Recommending products out of millions available</td>
</tr>
<tr>
<td>Movies</td>
<td>Individual movie recommendations out of millions of movies available on Netflix, Amazon, Vudu</td>
</tr>
<tr>
<td>Scientific</td>
<td>Analyzing genetic signatures across petabytes</td>
</tr>
<tr>
<td>IOT</td>
<td>ARM projecting 1 trillion IOT nodes; most will be reporting “Situation normal”</td>
</tr>
<tr>
<td>ADAS</td>
<td>Accidents in 270+B / month vehicle miles in US</td>
</tr>
<tr>
<td>Photos</td>
<td>Hundreds of millions of photos uploaded each week</td>
</tr>
</tbody>
</table>
NVMStor-Ultra Configurable NVMe SSDC Platform
Unique Subsystem Development Solution

• Provides Full NVMe Based Reference Design Using Mobiveil’s Controllers
 • PCIe Gen4.0 PCIe Controller (GPEX)
 • Multiport NVMe (UNEX)
 • Flash Reliability – (LDPC)
 • Enterprise Flash Controller (EFC)
 • UMMC
 • Media Control Cluster
• Reference Firmware is also provided
• Allows various Flash parts to be used
• Customer can add their custom value add in SW or HW
Mobiveil Configurable NVMe SSDC Platform

Zynq® UltraScale+ (XCZU19EG-2FFVC1760)
Quad-core ARM Cortex-A53,
Dual-core ARM Cortex-R5
1143KLEs, 726 GPIOs,
52 transceivers

Copyright Mobiveil, Inc.
Computational Storage Platform

- **Host controller**
 - PCIe
 - Gen4
 - Gen5*
 - Switch

- **DDR4 PHY**

- **DDR4 controller**

- **LDPC Error Correction**

- **NVM Express**

- **Applications s/w**
 - SQL / NoSQL / MySQL
 - MongoDB
 - Hadoop
 - Spark
 - Kafka
 - DynamoDB
 - Parquet
 - RocksDB
 - Hbase
 - Cassandra

- **Video Transcoding**

- **Flash controller**
 - ONFI
 - Toggle

- **Flash Management**

- **Security / Encryption**

- **AI/ML Analytics**

- **End to End Data path protection**

- **In-house: Completed (FPGA)**

- **In-house: New development**

- **In-house: Ongoing**

- **3rd Party**

Copyright Mobiveil, Inc.
RISC V based IoT SOC Platform

RISC-V SOC Block Diagram:
MV-IoT Platform
Further Engagement with Mobiveil

- Visit Mobiveil Booth for
 - SSD related IP blocks
 - NVMStor-Ultra Platform Details
 - How to accelerate your product development

- Contact us at ip@Mobiveil.com