Comparing silicon to simulations for a 1.3pJ/bit 25Gbps SerDes Rx in 28nm

Andrew Cole, Blake Gray, Jeff Galloway at Silicon Creations
Silicon Creations Overview

- IP provider of PLLs, Oscillators and High-speed Interface
- Founded 2006 – self-funded, profitable and growing
- Design offices in Atlanta and Krakow, Poland
- High quality development, award winning support
- IP in mass production from 7nm to 180nm, multiple 5nm PLLs ready
Some statistics

- > 200 customers ... Growing >3/month
- > 300 IP products ... Growing >4/month
- > 500 chips in production using our IP... Growing >5/month

Income from >95 customers in 2018
... we don’t depend on any one customer and will be here when you need us to be
PLLs from Silicon Creations

- Highest volume analog IPs – robust design and good QA are essential
 e.g. Fractional-N PLL:
 > 300 MP chips
 > 3M wafers
 ... Many billions of these PLLs produced

- PLL products include general purpose, fractional, low jitter AFE, μW IoT, Automotive
SerDes from Silicon Creations

- Robust and proven from 28nm to 180nm and from <100Mbps to 25Gbps
- Multiprotocol (for FPGA) and targeted protocols
 - SGMII, XAUI, RapidIO, V-by-1 HS/US, CameraLink, FPDLINK, JESD204, CPRI, PCIe1-4, 10G-KR, ...
- Come to our booth to learn about our TSMC 12FFC/16FFC multiprotocol PMA

© Silicon Creations 1.3pJ/bit Rx PMA – IPSoC, 2019
Lab Testing

Test lab with Matlab controlled equipment – 12 benches

> 100 IP test reports from 7nm to 180nm
Awards for quality & support

TSMC

• 2018 & 2017: “Mixed-Signal IP Partner of the year”
• 2017: “Audience choice paper” – USA OIP
• 2014: “Best Emerging IP vendor”
Awards for quality & support

SMIC

• 2015 & 2016: Best support
• 2014: Production volume growth
• 2013: Best Analog IP
IP Requirements

- Customer chip needs to receive >5,000Gbps of data
- TSMC 28 HPC+ was determined by other circuits
- Chip will operate in limited temperature range, but has limited heat sinking
- Target power <2pJ/bit (mW/Gbps/lane) with >18dB (moderate loss) channel
- Following slides present our design and show how silicon is meeting the difficult target with good margin
Termination with T-coil passive equalization

Linear equalization

Long path: 5-tap DFE with 64-step Phase Interpolator and 32 step DC offset

Copy of DFE ... sweep phase and compare data to DFE to measure eye

Turn off DFE and Eye for moderate loss (<18dB) channels
Power measurements

- Typical power measured with DFE off
- Simulations of extracted circuit predicted 1.3pJ/bit at 25Gbps (35mW/lane)
- Simulations and measurements with DFE on (supporting 25dB channel loss) show <2pJ/bit
- Silicon uses only 65% of 2pJ/bit design target for short channels
- Silicon works at 28Gbps over PVT
Jitter in recovered clock

- Ring PLL used for CDR balances power and performance
- Random jitter needs to be low enough for acceptable BER
- Results match expected jitter and are low enough for good BER over design range
Eye Diagram at Slicer

- Eye monitor at slicer can non-destructively measure the eye by sweeping phase and DC offset in copy of DFE
- CTLE/DFE calibration operates to maximize received eye area
Bathtub at Slicer

- Eye monitor can be used to measure eye opening for large numbers of bits
- Measurements of eye opening with PRBS31 at 25Gbps after CTLE/DFE calibration with 16dB channel loss (20°C to 90°C)
- Results show expected closure with BER and plenty of margin over design range
Outline

Silicon Creations introduction

25Gbps Rx PMA – requirements and silicon results

Summary
Summary

• Silicon Creations has been providing reliable, high performance clocking and SerDes solutions since 2006
• Our IP is in very high volume production from 7nm, and already available in TSMC 5nm FinFET
• Our versatile ring PLL has excellent PPA, and this has enabled us to build a 25Gbps SerDes receiver in TSMC 28 HPC+
• This receiver beats our lead customer’s aggressive power target and operational range with good margin