IP SoC, Santa Clara

Top 10 Techniques to Reduce Power & Cost with Optimum Selection of Memory IPs for SOCs

Farzad Zarrinfar

Managing Director of IP Division

https://www.mentor.com/products/ip/

April 9, 2019

Agenda

- SoC Market & Drivers
- Top 10 Techniques to Reduce Power & Cost for SoC Designs
 - Level of Abstraction
 - Clock Gating
 - 3. TLS
 - 4. Deep Sleep
 - Shutdown
 - 6. Voltage Impact (Multi-voltage)
 - 7. Multi-VT & ULP
 - 8. Dual-Rail & DVFS
 - 9. MemQuest Configuration Tradeoff
 - 10. coolSRAM-1T & coolROM Impact for cost Saving
- Differentiated Memory IPs for SoCs to Reduce Power & Cost
- Informative White Papers to Minimize Power & Die Size
 - https://www.mentor.com/products/ip/
- Q & A

Average SoC Die Area Partitioning

SoC Area Trend & Effective Techniques to Minimizing IP & IC Power

Source: SemicoResearch Corp.- SOC Market Analysis & Forecast 2017

SoC Power Consumption Trend & Techniques to Minimizing IP & IC Power

SoC Power Consumption Trend & Techniques to Minimizing IP & IC Power

Greatest Impact on Power is at RTL and Above

Micro-Architecture

- Block level clock gating
- Shift registers to pointer structures
 Flop cloning/sharing
 Memory/register file banking

- Memory caching

RTL

- Combinational clock gating
- Sequential clock gating
- Memory gating
- Data gating

- Physical Implementation— Multi-Vdd, Multi-Vth technology mapping
- Clock network optimization
- High-k transistors
- Novel circuit structures/logic families

PowerPro® Takes into Account Timing Specs and Power Trade-offs to Reduce the Power of memory intensive SoC

PowerPro Memory Gating insures "Light Sleep" (LS or TLS) signal meets Trlsc and Tflsc requirements

PowerPro, an automation tool for **Estimation & Optimization**

COOISRAM-6T Power Reduction Techniques

- Transparent Light Sleep, full data retention
 - Patented Automatic Transparent Source Biasing Leakage Reduction
 - Leakage Reduction > 50%
 - Zero Latency
- Deep Sleep for Power Gating
 - Periphery shutdown with <u>full data retention</u>
 - Optional isolation cells on input/output pins
 - Leakage reduction > 70%
- Shut Down for Power Gating
 - No data retention
 - Leakage reduction > 95%
 - Output Isolation options (Pull down or floating)
- Multi-VT support in Periphery
 - HVT to reduce leakage
 - LVT to maximize speed
 - SVT to minimize wafer cost
 - MemQuest selectable

TSMC-28HPCplus Power Reduction Features (coolSRAM-6T)

■ 512Kb TSMC-28HPC+ coolSRAM-6T SVT Bitcell

	Leakage Reduction Feature	Active Leakage	Deep Sleep Leakage	Shutdown Leakage
8192x64 Basic IP Supplier	None	1	N/A	N/A
8192x64 Mentor coolSRAM-6T	TLS, Deep Sleep, Shutdown	0.52	0.34	0.07

TSMC-28HPCplus Benchmark Comparison (coolSRAM-6T)

■ 540Kb coolSRAM-6T SVT Bitcell SVT Periphery Comparison

		Area WC Le		Typ Leakage	Customer Use-case WC Total Power	Customer Use-case Typ Total Power	
I	Mentor / Competitor	95%	22%	25%	33%	80%	
	Mentor / Foundry Provided	98%	20%	25%	25%	25%	

■ 540Kb coolSRAM-6T ULL Bitcell HVT/UHVT Periphery Comparison

			Speed	Typ Leakage	Typ Dynamic Power	Customer Use-case Typ Total Power
Ment Comp		~Same	150%	85%	65%	60%

ULP and uLL Technology for Power Reduction

- Memory IP Offering in TSMC ULP and uLLTechnologies
 - 40ULP: nominal voltage 0.9v, write-assist required
 - 55ULP: nominal voltage 0.9v, write-assist required for UHD bitcell
 - 28HPC+ uLL: nominal voltage 0.9v, write-assist required,
- ULP/uLL vs. LP
 - Lower voltage / power / leakage
 - Slower speed
- Multi-vt Periphery Further Reduces Leakage
 - 40ULP and 55ULP: hvt, uhvt
 - 28nm HPC+: hvt, uhvt
- Custom Features
 - Dual rail for additional dynamic power reduction
 - coolROM with Novelics bitcell runs at ultra-low voltage
 - Forward body-bias in slow corners for performance enhancement

TSMC-55ULP vs TSMC-55LP Benchmark Comparison (coolSRAM-6T)

■ 5120 x 32 coolSRAM-6T Instance With TLS, Deep Sleep, and Shutdown

Vendor	INSTANCE	Area	Access Time	Max Frequency	Active Power	Active Leakage	Deep Sleep Leakage
		(mm^2)	(ns)	(MHz)	(uW/MHz)	(mA)	(mA)
	coolSRAM-6T	(pre-shrink)	WC	WC	TC	BC	BC
TSMC-55LP	5120x32	0.12 1155	2.52	373	10.17	0.12.70	155.0
TSMC-55ULP	5120x32	U.1Z7133	5.15	140	5.05	155,00	77.05
Comparison = 55ULP / 55LP		Same	221%	38%	56%	40%	29%

- PVT Conditions:
 - TSMC-55LP: WC = SS 1.08V 125C; TC = TT 1.20V 25C; BC = FF 1.32V 125C
 - TSMC-55ULP: WC = SS 0.81V -40C; TC = TT 0.90V 25C; BC = FF 0.99V 125C
- Comparison Results
 - 55LP is 2.6x faster
 - 55ULP dynamic power is 44% less
 - 55ULP active leakage is 60% less
 - 55ULP retention leakage is 71% less
 - 55LP Vnom = 1.2V; 55ULP Vnom = 0.9V

coolSRAM-6T / Dual Rail Supply for Power Minimization

- Power is provided on two rails
 - Normal supply voltage VDDH down to VDD-10% for the bitcell and memory controller circuits
 - Low supply voltage VDDL down to VDD-35% for the memory datapath
- Huge savings for Dynamic Power
 - Dynamic power dissipation is split 1/3 to VDDH and 2/3 to VDDL
- Big savings for Leakage Power
 - Fully compatible with Automatic LPM, Sleep with data retention and full shut down.
- Minimal area impact
- Can still operate at high speed

Comparing of DR to SR, Dual Rail saves 20% of dynamic power and 15% of static power. As a trade-off, it is 3% bigger and 47% slower than Single Rail

MemQuestTM: Web-based Memory Compiler

Full nodes: 180nm, 130nm, 90nm, 65nm, 45nm

Half nodes: 160nm, 152nm, 110nm, 55nm, 40nm, 28nm HPM/HPC+

Roadmap -16/12 nm, 10/7 nm FF+

MemQuest / Instance Specification Page

novelics **memQuest**™

a a		
		Logout (zchen)
		memquest.ies.mentorg.com
Project:	ulp_uLL / TSMC-28H	PC+
Type:	coolSRAM-6T V	
Version:	2013.R1-rc3b ~	
Name:	NVIC _SRM6T_819	02x64
Depth:	8192	Number of entries or words in the memory (e.g., a 512Kbit memory organized as 8Kx64 has 8192 entries)
Width:	64	Number of parallel data I/O lines (e.g., a 512Kbit memory organized as 8Kx64 has 64 data I/O lines)
Size:	512 Kbits	
Subword	Byte ~	Bit or Byte: Add Bit/Byte writable subword capability.
Capability:		
Bitcell options:	ULL ~	SVT is Default, ULL is slower with lower leakage.
VT options:	UHVT ~	SVT is Default, HVT is slower with lower leakage, UHVT is slowest with lowest leakage.
Leakage Power	Shutdown	Leakage Power Management (LPM) reduces overall leakage.
Management:		Transparent Light Sleep (TLS) will reduce leakage, and does not require customer control.
		TLS can be applied separately to the Periphery and Core.
		Deep Sleep will disable power to all peripheral circuits while maintaining data retention.
		Shutdown will disable power to all circuits and lose data retention.
		Shutdown comes with TLS.
		Shutdown comes with Deep Sleep.
Redundancy:	Tessent-Column V	Select a redundancy option for yield enhancement.
		Tessent-Column is compatible with Tessent flow.
Submit Cancel		

MemQuest for TSMC Customers

Shorten Design Cycle for Architectural Analysis & in sync with TSMC Silicon

Sort by Dynamic Power

Selection	Area (mm²)	X (mm)	Y (mm)	Max Frequency (MHz)	Access Time (ns)	Dynamic Power (µW/MHz)	Active Leakage (mA) ⊡	
Operating Conditions (PVT):			:	wc *	wc *	tc	tc	
1 •	0.494	1.19	0.415	262	2.05	65.7	0.0538	
3 0	0.531	1.19	0.446	295	1.79	57.2	0.055	
2 ©	0.502	0.634	0.792	278	2.07	43	0.0604	
9 0	0.614	1.19	0.515	303	1.74	56.8	0.0608	
4 0	0.542	0.634	0.855	312	1.82	39.4	0.0619	
12 0	0.642	1.19	0.540	307	1.69	57	0.062	
15 ©	0.726	1.19	0.610	296	1.82	59.3	0.0644	
6 ©	0.563	0.634	0.888	296	1.95	41.3	0.0664	
17 0	0.810	1.19	0.681	292	1.86	62.5	0.0668	
11 0	0.630	0.634	0.994	297	1.98	40.6	0.0686	
13 0	0.661	0.634	1.04	297	2	41.9	0.07	
18 🏻	0.840	1.19	0.706	291	1.87	62	0.0748	
5 💿	0.553	0.358	1.55	255	2.17	31.3	0.0751	
8 0	0.599	0.358	1.67	252	2.32	30.6	0.0769	

Selection	Area (mm²)	X (mm)	Y (mm)	Max Frequency (MHz)	Access Time (ns)	Dynamic Power (μW/MHz) ⊡	Active Leakage (mA)
Operating	Conditio	ns (PVT)	:	wc *	wc *	tc -	tc
8 @	0.599	0.358	1.67	252	2.32	30.6	0.0769
10 ©	0.622	0.358	1.74	243	2.44	31.3	0.0826
5 ©	0.553	0.358	1.55	255	2.17	31.3	0.0751
14 0	0.723	0.358	2.02	236	2.63	33.1	0.0963
7 0	0.584	0.358	1.63	232	2.44	34.5	0.0812
4 0	0.542	0.634	0.855	312	1.82	39.4	0.0619
11 🏻	0.630	0.634	0.994	297	1.98	40.6	0.0686
6 0	0.563	0.634	0.888	296	1.95	41.3	0.0664
13 🏻	0.661	0.634	1.04	297	2	41.9	0.07
16 🏻	0.731	0.634	1.15	292	2.07	42.5	0.0798
2 0	0.502	0.634	0.792	278	2.07	43	0.0604
9 0	0.614	1.19	0.515	303	1.74	56.8	0.0608
12 0	0.642	1.19	0.540	307	1.69	57	0.062
3 0	0.531	1.19	0.446	295	1.79	57.2	0.055
15 🏻	0.726	1.19	0.610	296	1.82	59.3	0.0644
18 🏻	0.840	1.19	0.706	291	1.87	62	0.0748

Sort by Leakage Current

MemQuest / Architectural Analysis

Selection	Area (mm²) 🖪	X (mm)	Y (mm)	Max Frequency (MHz)	Access Time (ns)	Dynamic Power (μW/MHz)	Active Leakage (mA)	Sleep Leakage (mA)
Operating	Condition	ns (PVT)):	wc *	wc * ▼	tc	tc	tc
1 •	0.369	0.634	0.582	247	2.46	47.4	0.0393	0.0029
2 0	0.397	1.19	0.334	275	2.03	62.5	0.0379	0.0038
3 C	0.398	0.634	0.627	292	2	39.5	0.0412	0.0037
4 C	0.402	0.358	1.12	250	2.52	39.5	0.0468	0.0037
5 C	0.435	0.358	1.22	293	2.06	36.3	0.0493	0.0048
6 C	0.451	1.19	0.379	300	1.8	56.5	0.0403	0.0051
7 0	0.456	0.634	0.719	316	1.78	37.6	0.0441	0.0053
8 0	0.485	0.219	2.21	226	2.78	44.8	0.0625	0.0058
9 0	0.500	0.358	1.40	286	2.17	37.4	0.0534	0.0071
10 °C	0.525	0.219	2.39	226	2.96	44.6	0.0662	0.0077
11 °	0.552	1.19	0.463	309	1.7	57.1	0.0446	0.0077
12 °C	0.563	0.634	0.887	301	1.92	40.9	0.0496	0.0086
13 0	0.770	1.19	0.647	292	1.89	64.6	0.0529	0.0128

MemQuest, for Greatest Architectural Freedom Field-Of-Use For Memory IPs

Foundry			Novelics ported Fabs						
Proce	ss		180nm – 28nm (Varies by Technology & process Nodes)						
		coolSRAM- 6T (SP), Optimized for large instances	coolREG-6T (SP), Optimized for small instances	optimized for small instances		coolSRAM-1T			
		Range	Range	Range	Range	Range			
WORD_DEPTH		64 - 64K	16 - 2K	4 – 1K	128 - 64K	2K – 64K			
WORD_WIDTH	Į.	2 - 288	2 - 144	1 - 144	4 – 256	8-512			
MUX		2, 4, 8, 16, 3 2	2, 4, 8	1, 2, 4	4, 8, 16, 32, 64	8, 16, 32			
Banking	number of blocks	1-8	1	1	1-8	1-8			
Bit/byte write	select bit/byte write	0, 1, 8	0, 1, 8	0, 1, 8		0, 1, 8			
maximum hite nor		1M bit		36K bit	1M bit 1/2 M bit for 28 nm HPC+	4M bit 180nm to 55nm			

Wearable use case – power profile

- Battery: 150mAh
- Lifetime: 1 week
- System current: 892µA at battery

- Budget for always-on: 20% → 178uA_{bat}
- Budget for device: 526µW (subtract regulators)

Total Average: 402 uA

Sensor Architecture

Multi core processing

- Dedicated audio processing @50 uA
- Dedicated sensor compute @35 uA/MHz
- General purpose ARM CPU @75 uA/MHz

coolSRAM-6T*

- 512k (128k Always On) GF 40nm-LP @7 uW/Mhz
- 2.28 uA leakage current (8k block)

*Mentor coolSRAM-6T offered Lowest leakage & active current which allows ultra low power Always-On processing of audio/sensor data

QuickLogic

High volume SOC: Image Sensor design with coolSRAM-6T @ DAC 2017 Ultra Low Power Memory/ High Density IPs for AI Applications

Mentor Memory IPs with ultra low leakage & enables customers audio processing with better performance & die size reduction and minimized power consumption

Mentor Memory IPs with lowest dynamic power for DSP processing in audio application

coolSRAM-1T / Advantages

√ High Density

- Compiled to your exact specification
- Save up to 25%-50% area compared to SRAM-6T

√ 100% Standard CMOS Process

- No special layer
- No extra mask

✓ Low Leakage

- Single transistor bitcell (vs 6 transistor for SRAM-6T)
- IO transistor bitcell (vs core device for SRAM-6T)
- Large percentage of periphery is also IO device

✓ Silicon Proven

- Silicon success in 180nm-65nm
- Across multiple foundries

coolSRAM-1T / Memory Density Scaling

coolROM / Architecture

- Novelics Proprietary NAND bitcell
- Up to 2Mbit per Macro
 - Logical: Max 128K entries, 256 wide bus
 - Physical: Max 2K rows, 1024 columns
- Multiple Banks
 - MemQuest selectable up to 8 banks
 - Smaller bank size → Higher speed
 - Active power dissipation localized to the active bank

decoder	core
	sense amp
decoder	core
decoder	core
	sense amp
decoder	core
	output

28HPCplus Benchmark Comparison (coolROM)

Vendor	Configurations								
	3328 x 9								
Foundry Area (um^2)									
Mentor Area (um^2)									
Mentor Area Saving	53%	60%	46%	61%	59%				

- Novelics IP Advantage:
 - Up to 61% area saving

coolSRAM / Column Redundancy

Yield Enhancement for Cost Saving

- One spare unit per butterfly wing
- Consider when aggregate memory is > 2Mbits
 - For macros > ¼ MBit
- Small area overhead, negligible performance overhead
- Fully compatible with Tessent for automation of BIST/BISR

High volume SOC: Image/Depth Sensor design with coolSRAM-1T @ DAC 2016

Higher Density IPs & Cost Saving

IP Type Used	Memory in Chip	IP Area Saving	Die Cost	Cost Saving	Average ICs/Mont h	Months of Life	Cost Saving
coolSRAM-6T, coolREG-6T/8T, coolROM	40%	25%	\$4.00	\$0.40	500,000	18	\$3,600,000
coolSRAM-1T	50%	50%	\$4.00	\$1.00	500,000	18	\$9,000,000

28nm HPC+ Test Chip

- Testchip for 6 Novelics IP
 - coolSRAM-6T
 - coolREG-6T
 - coolREG-8T (DP)
 - coolREG-8T (2P)
 - coolROM
 - coolCAM
- 5 corner lots
 - TT, SS, FF, SF, FS
 - Lower voltage introduces higher level of Variability
 - Leakage controled, -40 D C to 125 D C
 - Mentor Tessent MBIST
 - PLL for at-speed
 - True Circuits, Inc.
- Direct access to memory pins for setup/hold testing

coolSRAM-6T 28nm HPC+ Shmoo MED 8192x16 (125C)

coolSRAM-1T "VDD vs Clk Freq" Shmoo (upto 120 Mhz in spec Voltage) WIDE 512x256 @ 125C (SMIC 110nm) Standard CMOS Process, No special layer, No extra mask

coolSRAM-1T / Shmoo (TSMC 130nm) 1.5V Process

Growth Opportunities

- AI/VR/ MR/ ML/ Wearable:
 - 65nm LP/ 55nm ULP/ 40 LP/ 28nm HPC+
- IOT
 - 28nm HPC+/ 40 ULP/110nm LP/152nm LP
- Automotive:
 - 28nm HPC+/ 110nm LP/65nm LP/ 55nmLP EMI

Differentiated IPs For Adding Value to Customer SOCs

Differentiated Memory IPs enable SOC designers to Reduce Power & Cost

- Architectural Analysis (Dynamic Power, Leakage, speed, area)
 - Using MemQuest with wide Field-Of-Use
- Lowest Dynamic Power & Leakage
 - HD/ULL bitcell & SVT/LVT/HVT/uHVT Periphery
 - Dual-VDD offering
- Smallest Area
- Fastest Speed
- Highest Quality with Transistor-based Verification
- Creative Value Added Services
 - Special PVT corner , PPA, & EMI analysis
 - Deep N-Well compatibility analysis
 - Write assist support for minimum VDD
 - Minimize routing congestion
 - Test Chip & Characterization Report
 - Full Integration with Tessent BIST/BISR/ATPG
 - Engineering & pre/post Support team

Microsoft Point of View: Advantages of on-chip memory & Mentor's coolSRAMs

- On-chip memories preferred to going off chip
 - Interface power loss
 - Transmission power
 - Board real estate / components / cost

- Current chip had complex constraints : high speed, low power, area & shutdown modes
- Employed 6T SRAMs and 6T (8T) single (dual) ported register files
- Selection based on a comprehensive set of evaluation criteria which considered the following
 - Speed
 - Dynamic Power
 - Leakage
 - Area
 - Interoperability with our BIST / DFT tools
 - Power down features
 - Max memory size
 - Compiler flexibility
 - Support

Summary

- Mentor & Novelics Provide Increased Value to Customers
- Embedded Memory Plays a Critical Role in Today's Designs Because it is a Large Portion of the Chip
- Selecting the Correct Memory will Impact
 - Your chip and system power consumption
 - Your chip and system speed
 - Your chip and system manufacturing cost
- Selecting the Right Memory IP and the Right Architecture will Help You Differentiate Your Product
- Q & A

Lets Work Together to Create Differentiated Products

https://www.mentor.com/products/ip/

A Siemens Business