Secure Chip Design

Essential Building Blocks for Securing Your SoC

www.cast-inc.com • +1 201.391.8300 • info@cast-inc.com
Secure & Security - what does it mean for you and me?

- Immune to attack?
- Incapable of being tampered with?

You can’t protect everything all the time - You need to make choices about possible threats and your assets
Secure data EQUALS secure SoC

- SoCs are associated with data at every stage:
 - Generation
 - Transmission
 - Processing
 - Storage
 - Displaying
 - ...

- SoC are everywhere – power plants, meters, cars, phones, ...
Security around the SoC

- **Trade-offs**

- **The main goals:**
 - Keep the original functionality it was designed with
 - Restrict access to only authorized users
 - Prevent data leak, copy, modification
 - ...
 - Application specific objectives
Critical components for building Hardware Root of Trust

- Secure Boot is a must-have for every application
- Firmware Encryption
- Debugging
- Hardware Security Model
Cryptography for RoT

- Public key cryptography

Diagram with keys and ≠ symbol

- Software Lab:
 - Hash generation
 - Private key → Signature (certificate of authority)

- SoC:
 - Public key → Signature confirmation → Authenticity
 - Hash generation & verification – ‘tampered or not’?
Firmware Encryption

- Extra protection for critical run-time code:
 - Crucial algorithms, look-up tables, passwords, etc.

- Symmetric keys

- Stored encrypted and decrypted when loaded into chip memory
Debugging

- The safest way – No Debugging Access!

- But, if really needed (medical, automotive, ...)

Challenge-response authentication

- A new public key on the chip
- True-random number generator
- A private key on the JTAG external terminal
Multiple Encryption/Decryption Resources

- Hardware Security Model (HSM)
- Re-use by SoC during the run-time
 - Data encryption/decryption
 - Key generation
 - Hashing and many more

What Next: Design & Use, or ?
CAST Response
The GEON SoC Security Platform

- A scalable collection of essential building blocks each with a specific purpose for designing a customized hardware Root of Trust for a specific secure SoC
 - Processor agnostic
 - Works with RISC-V, ARM, MIPS, BA2x, and any other modern CPU

- GEON consists of the following modules:
 - Secure Boot with Secure OTP
 - Firmware Encryption
 - Secure JTAG
 - HSM

- Everything is designed to work together
 - Saves space
 - Maximizes performance
GEON Flexibility

The GEON Platform is:

- Configurable - select only the modules you need to support your security architecture
- Flexible - reusable components are shared between modules to reduce size and improve performance
- Architecture independent - works with ARM, MIPS, RISC-V, Beyond BA2x or other well known processor architectures
- Designed to work as HSM and performs stand alone functions during the run-time
Why you should consider GEON Security Platform

- It offers a flexible solution to all the basic problems of building a hardware Root of Trust for a secure SoC
 - It is designed to fit the needs of different kinds of customers with different kinds of SoC designs
 - Customer and silicon proven

- Supported by an experienced team of experts that can help solve even the most difficult security problems

- Come and check us out! → CAST booth at D&R

Thank you