

Enabling 400G Networking with 56G Ethernet PHY IP D&R IP SoC Days

Rita Horner

April 9, 2019

Agenda

- Next-Generation Data Centers
- Multi-Level Modulation
- 56G Ethernet PHY
- High-Speed Ethernet PHY Integration

Enterprise Growth

- Horizontal Scaling
 - (a.k.a. scaling out)
 - Additional processing & storage
 - Larger housing area
 - Increased IT management & cooling cost

- Vertical Scaling (a.k.a. scaling up)
 - Upgraded hardware
 - Potential availability constraints
 - More expensive equipment
 - Ease of control

Facebook Hyperscale Data Center

1.5 Million Square Feet on a 325 Acres (Virginia, US)

Hyperscale Data Center 100GE Interconnects

Hyperscale Data Center 400GE Interconnects

Agenda

- Next-Generation Data Centers
- Multi-Level Modulation
- 56G Ethernet PHY
- High-Speed Ethernet PHY Integration

Multi-Level Signaling vs. Binary Modulation

PAM-4 (4-Level Pulse Amplitude Modulation) vs. NRZ (Non Return to Zero)

Channel Impairment Impact

PAM-4 vs. NRZ

- Additional voltage levels reduce the eye height by a factor of 3 in PAM-4
 - Signal-to-noise ratio (SNR) degrades
- TX output eye width → 1/2 to 2/3 of NRZ
 - Middle eye is the most symmetrical
 - Top and bottom eyes do not match the middle eye
- Impairments impact each eye differently
- Nonlinearity can significantly impact bit error rate
- Crosstalk and reflection have greater signal degradation impact

Shift From NRZ To PAM-4

Data Center Interconnects @ 100GE → 400GE

Channel Length, Media, Loss, Width (x4) → (x8)

As speeds go up, technology requirements migrate down, and channels shrink

Connection Area	Medium Type	100GE (25G / 50G / 100G)	400GE (50 G / 10G / 200G / 400G)
Regions (Data center-to-data center)	Optical	40km SMF	10km SMF
Colocation (Building-to-building)		10km SMF	2km SMF
Room-to-room		100m MMF	500m SMF
Intra-rack (Rack-to-rack)		30m AOC, MMF	30m AOC, MMF
Inter-rack (within the rack)	Copper cable	5m DAC, Twin-axial	3m DAC, Twin-axial
Intra-server	Copper PCB/mezzanine/backplanes	35dB @12.89GHz	30dB @13.28125GHz

Single Mode Fiber (SMF), Multi Mode Fiber (MMF), Active Optical Cable (AOC), Direct Attached Cable (DAC)

Agenda

- Next-Generation Data Centers
- Multi-Level Modulation
- 56G Ethernet PHY
- High-Speed Ethernet PHY Integration

Major Types of PAM-4 Designs

Analog vs. Digital Receiver Architecture

- Similar to NRZ receiver design
- PVT variation concern
- Technology scalability
- DFE taps (area + power)
- Ideal for short channels
- Power advantage

- Complex architecture
- Flexibility in process scaling
- More capable signal processing techniques
- Ideal for broad range of channels
- Power disadvantage

IEEE802.3 Standards for Single & Multiple Channel

802.3bs (200G & 400G) & 802.3cd (50G, 100G, 200G, 400G) @ 53.125 Gbps

Specifications	Description		
50GAUI-1 100GAUI-2	Chip-to-chip	Chip	
200GAUI-4 400GAUI-8	& Chip-to-module	Chip Module	
50GBASE-CR 100GBASE-CR2 200GBASE-CR4	1-, 2- or 4-lane shielded balanced Twinaxial copper cabling (CR), 2 m & 3 m	Chip	
50GBASE-KR 100GBASE-KR2 200GBASE-KR4	1-, 2- or 4-lane Electrical backplane (KR)	Chip	

Single & aggregated link rates of up to 400 Gbps

DesignWare 56G Ethernet PHY IP

For Next-Generation 400G Hyperscale Data Centers

Agenda

- Next-Generation Data Centers
- Multi-Level Modulation
- 56G Ethernet PHY
- High-Speed Ethernet PHY Integration

DesignWare 56G PHY Integration

DesignWare 56G PHY Package Study

Escape Route & Substrate Routing

DesignWare 56G PHY IBIS-AMI Models

Silicon Correlated Models for Accurate SI Analysis

- Model elements to match architecture & implementation (including adaptation algorithms)
- Model tuned with information from hardware characterization data
- Correlated with silicon characterization for accurate analysis
- Verify models with different AMI simulators - Keysight-ADS, SiSoft-QCD and HSPICE

DesignWare 56G Ethernet PHY IP

For Next-Generation 400G Hyperscale Data Centers

- Available in advanced process technologies (16-nm to 7-nm FinFET)
- Supports all OIF & IEEE 802.3 Ethernet-based channel types
 - Backplane, copper cables (DAC) and optical links
 - Backward compatible with NRZ data rates
- Delivers high performance, >35dB @ 14GHz PAM-4 Nyquist
- Digital (AFE + ADC + DSP) based receiver with power-performance knobs
- Robust performance over Voltage & Temperature (VT) corners
- Scalable architecture to 112 Gbps

Thank You

Synopsys.com/ethernet

