

Sowmyan Rajagopalan, Founder & CTO

Thalia Design Automation

Is efficient Analog IP reuse a Myth?
An Innovative Approach to make Analog IP reuse a reality
April, 2019

Analog IP Reuse – Why is it difficult?

- Analog circuit design is impacted by a number of factors
 - Device performance,
 - Technology characteristics,
 - Functional requirements,
 - Design methodology
- Migrating an Analog circuit into a new technology is almost a redesign of an existing IP – custom requirements
 - Even a bandgap requires design redo !!!
- Limited solutions in the market and a shortage of analog designers exacerbates the problem
- Is efficient Analog IP reuse a dream?

2 | 17 April 2019

Thalia at a glance

2015

Solutions Offering launched targeting Analog Reuse

•Experienced Delivery Team Established – Avg. 20 years of experience 2017

Thalia established in India

2018

Thalia expanded to Germany

Amalia™ Suite Initial release

2014

Several customer designs delivered

•RF Front end, Baseband applications

2016

AmaliaTM expanded to address several flavors of TSMC, GF, UMC, In-house technologies of Tier1 design companies

2017

2017

Thalia Design Automation Ltd

Confidential

17 April 2019

Thalia's target solutions

Thalia Design Automation Ltd

Through a combination of

Innovative Technology

Methodology

Confidential

Why are we different?

Thalia Unique Approach

- Speed
- Efficiency
- Cost

Thalia Resources

> 20 Years experience

Toolsets Amalia[™] Capability

Design Enabling Capability

Thalia's Analog Porting Flow

Thalia Design Automation Ltd Confidential 7 17 April 2019

Design Example – PLL Application in Wi-Fi Migration

Thalia Design Automation Ltd

Confidential

8

17 April 2019

The Design Conundrum

VCO(LC based)		Programmable Feedback divider			Phase Frequency Detector			
Centre frequency	3.86GHz	Opera Schedule 6.4GHz freque		•	perating Up to 1 equency		60MHz	
Current consumption	1.5mA	Current consumption	T.0mA					
Tuning range with band selection	3GHz-4GH	Output swing	Rail to	Full different		e Pump 40uA-200	υA	
Phase noise	-120dBc/H @1MHz off	>	•	design with programmo				
Topology						echnology Differences		

Design Example: Clk PLL – Thalia's Solution

 Targeted automation to provide incremental time and cost savings – full automation doesn't work in Analog

Thalia Design Automation Ltd Confidential 10 | 17 April 2019

Design Example: CLK PLL – Migration Results

Thalia Design Automation Ltd

Confidential

11 | 17 April 2019

Business Value: Analog Migration

Design	Parameter		Verified Specification			Min	Тур	Max	Units
	Conditions		min	nom	max				
	Functional requirements								
CLK-PLL	PLL comparison frequency	Same as the XO frequency		40			40		MHz
	Output frequencies to the LB and HB PLL:s (low noise)			160			160		MHz
		To frequency counter		40			40		MHz
	Other output			960	Ī		960		MHz
	frequencies	Test-output		40			40		MHz
		To ADC/DAC		160			160		MHz
	Parametric requirements								
	EVM from Integrated phase noise at the 160MHz output	Integrated from 10kHz to 2MHz and referred to 5.9GHz	?	-42.9			-43.6		dB

- Ref Frequency=40MHz
- Clock output: 2.88GHz
- VCO phase noise =-121dBc/Hz @1MHZ.
- Programmable loop filter AND Programmable divider.
- EVM for Integrated PHASE NOISE @160MHZ should be better than -42dB.
- Ref spur =-90dB
- TSMC to GF 28nm
- Migrated, Design changes and layout in < 6-7 weeks

Thalia Design Automation Ltd

Confidential

Solutions delivered by Thalia

Unique combination of Experienced Resources and Innovative Technologies

Application	Technologies	Nodes		
Dual Band WIFI	TSMC, GF, Samsung	22nm, 28nm, 40nm, 28nm FDSOI		
Bluetooth IP	TSMC, GF, Samsung	28nm, 40nm 28nm FDSOI		
ADCs, PLLs, LNAs, PAs	TSMC, GF, Tier 1 In-house technologies, SMIC	16FF to 130nm		
PMIC Derivatives	TSMC, GF, UMC, AMS	16FF to 350nm		

Wide range of Technologies and nodes from 350nm down to 16FF nm Proven Track Record delivering designs in cutting edge applications and in newest technologies

Rapid Analog Porting - Reuse Customer Examples

Classification	Examples	Redesign Cycle Time*	Thalia's Cycle Time*
Standard Analog IP	DAC, ADC, PLL	12-16 weeks [2-3 FTE]**	4-8 weeks [2 FTE]**
Application Analog IP	Bluetooth, GPS/GLONASS	>40-50 weeks [~ 6-8 FTE]**	18-22 weeks [~ 6-7 FTE]**
Application Analog IP	Dual Band WLAN	>50 weeks [~ 6-8 FTE]**	22-28 weeks [~ 6-7 FTE]**

(*) Elasped calendar time to Specification Compliant Design

(**) FTE: Full Time Equivalent

Timescales will be impacted by Circuit complexity and process node differences

Customer Testimonial

Kave Kianush, Catena Vice President and Chief Technology Officer

"We're taking a new approach, which represents a fundamental shift in the way analog IP is created and delivered.

Our relationship with Thalia helps us to deliver exactly the right feature and performance combination for our customers, against ever more demanding time-to-market and cost requirements.

Thalia's combination of novel design automation technology and analog design expertise is unique in the market.

We've already seen a positive impact on our ability to deliver against tight customer deadlines."

https://www.thalia-da.com/catena-selects-thalia-da-to-facilitate-analog-ip-re-use/

Thalia Design Automation Ltd Confidential | 17 April 2019

Summary: Re-inventing Analog Reuse

- Unique combination of toolsets, methodology and design experience
- Proven track record 16 FF to 350nm; TSMC, UMC, GF, Tower, SMIC, AMS, Tier 1 Technologies
- Direct application in migrating IPs Off the shelf IPs

Contact us sales@thalia-da.com

16 | 17 April 2019