Find Top SoC Solutions
for AI, Automotive, IoT, Security, Audio & Video...

x86 Lacks Innovation, Arm is Catching up. Enough to Replace the Giant?

techpowerup.com, Apr. 08, 2020 – 

Intel's x86 processor architecture has been the dominant CPU instruction set for many decades, since IBM decided to put the Intel 8086 microprocessor into its first Personal Computer. Later, in 2006, Apple decided to replace their PowerPC based processors in Macintosh computers with Intel chips, too. This was the time when x86 became the only option for the masses to use and develop all their software on. While mobile phones and embedded devices are mostly Arm today, it is clear that x86 is still the dominant ISA (Instruction Set Architecture) for desktop computers today, with both Intel and AMD producing processors for it. Those processors are going inside millions of PCs that are used every day. Today I would like to share my thoughts on the demise of the x86 platform and how it might vanish in favor of the RISC-based Arm architecture.

Both AMD and Intel as producer, and millions of companies as consumer, have invested heavily in the x86 architecture, so why would x86 ever go extinct if "it just works"? The answer is that it doesn't just work.

Comparing x86 to Arm

The x86 architecture is massive, having more than a thousand instructions, some of which are very complex. This approach is called Complex Instruction Set Computing (CISC). Internally, these instructions are split into micro-ops, which further complicates processor design. Arm's RISC (Reduced Instruction Set Computing) philosophy is much simpler, and intentionally so. The design goal here is to build simple designs that are easy to manage, with a focus on power efficiency, too. If you want to learn more, I would recommend reading this. It is a simple explanation of differences and what design goals each way achieves. However, today this comparison is becoming pointless as both design approaches copy from each other and use the best parts of each other. Neither architecture is static, they are both constantly evolving. For example Intel invented the original x86, but AMD later added support for 64-bit computing. Various extensions like MMX, SSE, AVX and virtualization have addressed specific requirements for the architecture to stay modern and performing. On the ARM side, things have progressed, too: 64-bit support and floating point math support were added, just like SIMD multimedia instructions and crypto acceleration.

Click here to


Partner with us

Visit our new Partnership Portal for more information.

Submit your material

Submit hot news, product or article.

List your Products

Suppliers, list and add your products for free.

More about D&R Privacy Policy

© 2018 Design And Reuse

All Rights Reserved.

No portion of this site may be copied, retransmitted,
reposted, duplicated or otherwise used without the
express written permission of Design And Reuse.