The Evolution of High-Speed PHY IP for Compute & Networking SoCs
D&R IP SoC Days Silicon Valley

Manmeet Walia,
Sr. Product Marketing Manager
April 2020
AGENDA

1. Use Cases for Long Reach & Die-to-Die Connectivity
2. Key Care Abouts
3. Differentiated IP Solutions
Long Reach Connectivity Use Cases
From 100GE to 400GE with Machine-Machine Traffic Growth & Leaf-Spine Architectures

Line Card
8G → 16G/25G/32G & USR

Intra-Rack (ToR)
25/50G → 50/100G

Inter-Rack, Co-Lo & Regional
50/100G → 200/400G

- **DAC Vs. Optical**
- **Spectrum Switches**
- **ToR Switch → MoR**
- **12.8TB → 25.6TB → 51.2TB**
- **Servers**
- **Accelerator**
- **Network Appliance**
- **SSD**
- **HDD**

- **Pluggable to Mid-Board Optics**
- **Chiplets**
- **Smart NICs**
- **PCIe 5.0 CPUs with Cache Coherency**

Intra-Rack:
25/50G → 50/100G

Inter-Rack:
25/50G → 50/100/200G

Co-Location:
50/100G → 200/400G

Regional:
100G → 400G
Next Gen. PAM-4 PHYs for Long Reach

Evolution of Top of Rack Switch in Hyperscale Data Centers

- 3.2TB 128x25G
- 6.4TB 256x25G
- 12.8TB 256x56G
- 25.6TB 256x112G
- 50TB Chiplets

2014 2016 2018 2020 2022?

Key Careabouts

- Area & beach-front
- NW & EW macros
- Power vs. performance
- Robust PVT operation
- Crosstalk performance
- True LR performance
- Overall integration
DesignWare 112G/56G PHYs

High-Performance Long Reach Connectivity

- Architected for next gen. 400G - 800G data centers, enabling top-of-rack switch connectivity with 5M DAC cables & backplanes

- Comprehensive PAM-4 multi-test chip strategy
 - 7 test chips in advanced FinFET Technologies
 - Customers with silicon in high volume data center & telecom applications

- Exceeds critical J-TOL & I-TOL specs by wide margin with patent pending low latency M-M CDR architecture for a true long reach performance

- Designed for dense networking & HPC SOCs with area efficient 4-lane square macro & unique layout to maximize bandwidth per die-edge through stacking & placement on all 4 edges of the die

- Support for broad range of protocols (Ethernet, OIF, CPRI, JESD, InfiniBand) with independent per lane PLL for data rate flexibility

- Easy thermal budgeting with power scaling techniques, delivering up to 20% power reduction in low loss channels

- Build for harsh data center & telecom environments with robust performance over VT corners with μP based Raw-PCS & performance enhancing aligos
Synopsys’ 112G Ethernet Evaluation Card

Enables Comprehensive Electrical Testing Including Temp Cycling in Customer Chassis

- JTAG
- Internal Probe
- Xilinx Vertex
- Direct Power Supply w/o Regulators
- FPGA
- Test Chip Socket
- High Speed TX 4 Lanes
- High Speed RX 4 Lanes
- Reference Clock
- Status LEDs
- Power Supply Variation Knobs
- Power Supply
- Supply Regulators
Two Converging Trends for D2D Connectivity
DesignWare Die-to-Die IP Addresses Key Careabouts For Both Markets

Die Disaggregation (Homogenous Dies)
- Split massive SoCs approaching reticle size
- Improve yield & die cost
- Increase scalability
- Extend Moore’s law

Package Integration (Heterogenous Dies)
- Bring different functions into same package
- Lower power, smaller form factor
- More flexibility, multiple SKUs etc.
- Reuse, lower risk, lower cost & improve TTM
Server Chip Set
Die Disaggregation; Splitting Dies at Core vs. IO Have Different Careabouts

• **Splitting IO**
 - High bandwidth
 - Longer reach
 - BER is less important as it is managed with end to end protection

• **Splitting Cores**
 - 2 CPU dies acting like a single CPU
 - Low latency
 - Low BER
 - No FEC
5G Wireless Infrastructure

Package Integration; JESD 204 Interface Replaced by USR SerDes

Multi-Chip Solution with JESD 204 Interface

• Package integration use case
 – Heterogeneous dies
 – Digital front end in 7nm
 – ADC/DAC + RF TRX in 12nm or 16nm

• Key Objectives
 – Reduce power
 – Smaller form factor
 – Process node optimization per function
 – Reduce Latency
 – Standardization @ JEDEC (TAT 2022)
 – Re-use, lower risk and TTM
Critical Metrics for Die-to-Die Connectivity
One Size Does Not Fit All…

- Latency
- Power
- Bandwidth per beachfront

 Standards compliance? Ecosystem?

- Cost & yield
- Bit error rate
- Reach signal integrity
Die-to-Die PHY Options

Multiple Solutions have Emerged that Allow Trade-Off of Critical Metrics

<table>
<thead>
<tr>
<th></th>
<th>Serial Interface (PAM-4)</th>
<th>Serial Interface (NRZ)</th>
<th>Parallel Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications</td>
<td>OIF CEI 112G URS/XSR</td>
<td>OIF CEI 56G URS/XSR</td>
<td>OpenHBI, AIB, BoW</td>
</tr>
<tr>
<td>Data rate per Lane</td>
<td>56Gbps to 112Gbps</td>
<td>2.5Gbps to 56Gbps</td>
<td>2 to 4Gbps → 6Gbps</td>
</tr>
<tr>
<td>Bandwidth/beachfront</td>
<td>High</td>
<td>✔</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Power</td>
<td>1.0 pJ/bit</td>
<td>1.5 pJ/bit</td>
<td>0.5 to 1.0 pJ/bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Latency</td>
<td>Higher</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Bit error rate (BER)</td>
<td>Requires FEC in PAM-4</td>
<td>Reliable link</td>
<td>Reliable link</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Packaging technology</td>
<td>Standard (substrate)</td>
<td>Standard (substrate)</td>
<td>Advanced (interposers)</td>
</tr>
<tr>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Overall cost</td>
<td>Low</td>
<td>✔</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>
DesignWare Die-to-Die Solutions

112G USR/XSR & HBI/AIB PHYs

• SerDes & Parallel-based Die-to-Die PHY IPs support most packaging technologies
 – 112G USR/XSR SerDes compliant with OIF CEI-56G/112G standards
 – Parallel PHY compliant with AIB and HBI standards

• Area optimized macros enable maximum placement flexibility and high bandwidth/beachfront

• Protocol agnostic Raw-PCS implements all calibration, adaptation and other advanced algorithms for robust operation over VT

• Built-in loopbacks, testability and diagnostics features provide increased testability & coverage for known good dies

• Low latency data path architectures provide ideal solution for die disaggregation in MCMs for Server & AI applications

• SI-PI and Integration services to assist customer use of IP
Synopsys Differentiation

Comprehensive Integration & Support

Integration
- Flexible metal stack (11 Min, Top 2 thick)
- Flexible bump pitch with support for Cu-Pillar & micro-bumps
- Optimized placement on 4 edges of die
- Reference clock forwarding for integrating multiple instances
- Extensive test features include ACJTAG, SCAN, IDDQ/Burn-in, RX eye monitor

Support
- Tightly integrated deliverables; optional early enablement with front end kits
- PCB & Package substrate design guidelines
- Silicon Correlated IBIS-AMI Models for Accurate Signal Integrity Analysis
- Hardware support include prototyping kits
- Support & Integration Reviews

<table>
<thead>
<tr>
<th>Scatter Plot</th>
<th>RX Eye</th>
<th>Simulated (IBIS AMI)</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFE Taps</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synopsys: The Most Trusted High-Speed PHY IP Provider

• IP solutions for 800G SoCs: DDR5/4, HBM, PCI Express 5.0, 112G Ethernet, Die-to-Die, CXL
• Adopted by leading data center companies
• Available in advanced process technologies from 16-nm to 7-nm FinFET, with 5-nm in design
• 112G Ethernet PHY for long reach connectivity over backplane, copper cables, & optical links & successfully tested with 40dB+ Backplanes & 5 Meter Copper Cables
• 112G USR/XSR PHY for die-to-die connectivity over organic substrate & InFO
• HBI/AIB PHY for die-to-die connectivity over interposers & InFO
• Comprehensive support for easy IP integration into SoCs
Thank You