

The Solutions People

300Mn gate Data Centre SoC challenges and PPA insights.

March 2020

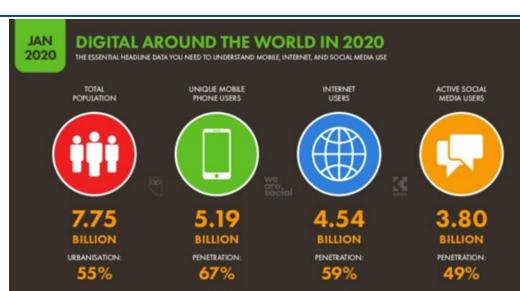
Presenter: Maulik Patel & Milan Dalwadi

Introduction

PnR Implementation Challenges

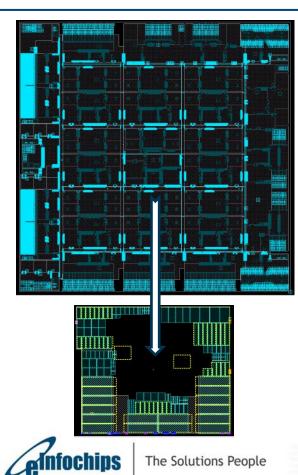
Sign-off Challenges

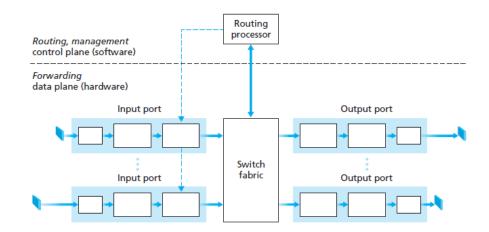
Full Chip STA challenges


Conclusion

Introduction

- Increasing demand for internet
- Need for data centre ASIC SoC for ultra faster data processing
- Trillions of Logic gates in SoC.
- Implementation challenges for Timing closure, Congestion and Sign-off
- Improve Power Performance Area using advance features of EDA tool.





Data Centre ASIC Specifications - Overview

ASIC Specifications

Dimensions : 26mm x 25mm (Part of 2.5D Package) ~650mm2 Technology : 16nm FF TSMC, 15+1 Metal layers Power : 450W, 6Track std cell Primary clock frequency : 1.4 GHz and 1.6GHz Data throughput : 2TBPS total channel Timing sign off for 50+ Corners

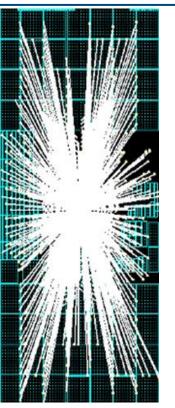
Data Centre ASIC Challenges

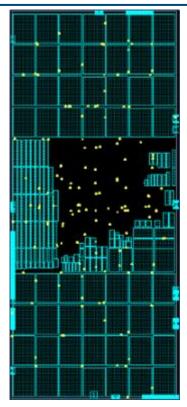
- All the blocks are having very high density ~70%, to minimize chip dimesion.
- Very high performance (frequency 1.6 GHz) to meet target thoughput
- Very low data latency for high speed data processing
- Severe Congestion issues due to high density & Complex Logic
- 150+ hard macro in 90% blocks
- Physical verification challenges due to dimension
- Turn around time more than 2 weeks(PnR + Signoff) per block
- Aggressive Active & Leakage Power requirement

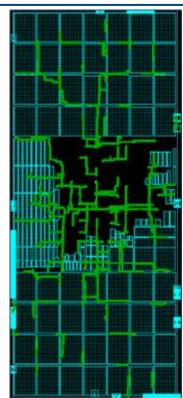

Stage	Run Time (Hours)
Floorplan	20
Placement	52
CTS	74
Route	80
Signoff	40

PNR Challenges - Timing & Congestion

- Place to Route huge timing degradation due to Layer assignment for HFN signals varies between Place & Route
- Upper metal used for Global routing at placement for HFN nets
- RC scaling to make net parasitic values more pessimistic during place and clock, which improved timing correlation between placement and route stage.
- In PnR used 10% extra RC pessimism to overcome it.
- One of the Critical block in terms of High ULVT count, Severe Congestion and Huge DRC count.
- High percentage of ULVT causes High leakage power as this blocks was instantiated multiple times at Full Chip.
- Complex logic introduced criss crossing of signals all over the core area.
- Analysis of Logic module connection using ICCOMPILER-II Data Flow Fly Lines utility

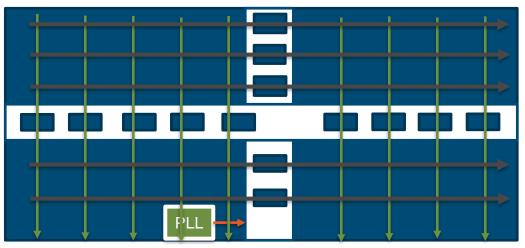

Stage	Setup (WNS TNS FEP)	Hold (WNS TNS FEP)	DRC	ULVT%
Route Before	-0.144 -27.5 3.9k	-0.070 -0.5 476	4432	14.27
Route After	-0.021 -0.748 56	-0.003 -0.05 100	130	3.89





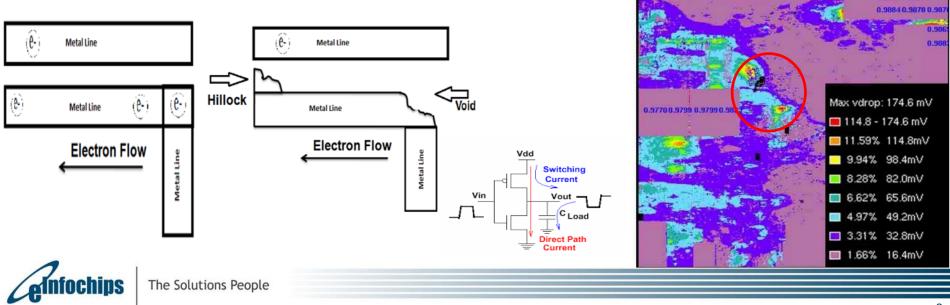
PNR Challenges - HFN Issue During Optimization

- Single clock gater to control the entire design at Pre-CTS
- CTS Clones clock gates for HFN nets, may cause DRV failure
- Used ICCOMPILER-II inbuilt utility to build buffer trees for HFN nets.
- Layer Promotion for HFN nets to minimize RC



Clocking Methodology

Mesh Structure Distribution from PLL to Clock repeater.


- Manual Tap route from PLL to Clock repeater.
- Custom routing & buffer insertion in Clock repeater to extend the reach point to all accessible clock terminal throughout chip.
- Uniform clock pitch distribution & custom routing from spine in horizontal & vertical direction to access chip sections. Equidistant clock terminals (pitch value defined based on simulation) drops to pushdown at block level.
- Pushdown clock terminals are tapped to L1 header inside block, from L1 header CCOPT or Custom clock tree is built.

Signoff challenges - Signal EM & Dynamic IR

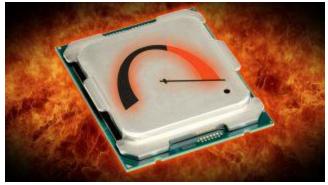
- Numerous EM violation. Due to lib driven max_cap value.
- Based on analysys, we chose 60ff max_cap limit for all the blocks.
- Improvement in SigEm and design QoR by restricting cap value in PnR.
- Slight jump in utilization as tool was added more numbers of buffers to fix cap.
- Significant Improvement from 2500 viols to 200 viols by applying max_cap 60ff limit.

- Dynamic IR drop is a drop in the voltage due to the high switching activity of transistors.
- It happens when there is an increasing demand for current from the power supply due to switching activities of the chip.
- Dynamic IR drop evaluates the IR drop caused when a large number of circuitry switches at the same time.
- Localize IR drop may introduce setup and hold viols due delay variation of transistor.

Signoff challenges - Dynamic IR drop

- Designing the chip at lower technology node, dynamic power consumption is very important when you have highly utilized blocks.
- Mesh clock structure is used to minimize latency & skew, To achieve this we have to use high drive strength buffers.
- Dynamic power loss happens when there is a high switching activity in localized area.
- High cell density in local region.
- Distance between two clock cells can be controlled by using advanced placement feature of ICC, So while building clock tree so that switching activity can be controlled in localize region.
- We have also provided keepout around the clock buffers and in post route we have inserted decap cells.

Dynamic IR Clock Results					
Dynamic IR clock value	75mV				
Dynamic IR clock count	200				



L6svt16_fill	a		a16svt16_shddff0				a16svt16_fill				a16sv		
03040	.78	65200y6503040			03	040		8587	0	7	1254	0	
	<u>م</u> 1	al6svtl5_fill			2 <mark>a16</mark>			a16l	a _z		.6IV	a	
ycap_m	os_a8_x1 Incre	1348 2 S	100y64	97280	anc	e be	.8410 DTW	0y64	97280 20 clo	ck	9 <mark>728</mark> 0	fer	
al6svtl	6_filibyc	ap mi	os a8.m	ame	ane		a165	VI16	fill	al	0SV	a	
reg_1_	91	520	0		915		520		94900y64915			0	915
e	a16s	v	a	. al6s		sv		a16svt16_fill		_fill		al6sv	

Dynamic IR Clock Results (with workaround)					
Dynamic IR clock value	51mV				
Dynamic IR clock count	3				

Fullchip STA challenges

- Data Center Soc typical contains Hundred Milions + Instance count, Hundreds of Blocks, Multiple Clusters.
- Lots of Interface to meet Critical Timing & Latency targets.
- Hundred of data/address Buses with width of 500-1000 bps
- STA at single scenario would require roughly 7000G, Multiple CPU, couple of days.
- Tedious job to Analyze timing reports
- Divide run and Analyze to reduce runtime & TAT
 - Clusterwise Timing(Within cluster interface timing)
 - Clockwise Timing
 - Interface Wise Timing (cluster-cluster interface timing).
 - Blockwise Timing (Interface and internal timing for particular block).

Fullchip STA challenges

1. Cluster wise timing :

- Generate histogram, Summary, Native report for each cluster
- Addressing violations based on most violating cluster.

2. Clockwise timing :

- 2000+ Clock in the design.
- Segregating the reports clockwise and address based on clock group.

3. Interface Timing:

- Inter/Intra cluster timing violations for long paths through feedthrough.
- Meeting Critical Latency targets, Adjusting the IO constraints and Routing the nets in higher layers
- Similar way we had identified the major timing violations and closed the full chip timing.

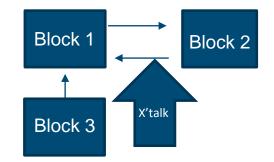
4. Block Wise Timing:

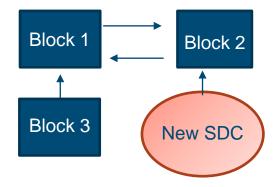
- Help to analyze block level timing and interface timing.
- Reduced TAT & Less Iterations.

Fullchip STA challenges

Check Timing :

- Shows potential timing problems
- Finding no clock, unconstrained endpoints, ideal clock and loop violations.
- Check for Clock specs and Constrained Registers


Coverage analysis:


- Coverage report is most important sanity check while doing full chip timing analysis.
- % of total paths being timed.
- Reports endpoints remaining untested with specific reasons like no clock, constant_disabled, false_paths etc.
- Missing Constraints.
- Important to maintain functionality & Performance of the design.

Discrepancy B/w Block & Full Chip Level Timing

- Interface delay modeling uses 60-40% of clock period to allocate I/O delay to block.
- Next Budgeting based on all Routed Blocks to adjust I/O delays.
- Timing discrepancy b/w block and full chip due difference in timing window at the interface.
- Difference in arrival time at block boundary caused due to extra delta delay and failed timing at Block level.
- Developed scripts to generate accurate arrival times for all the blocks using Primetime commands to overcome this issue.
- 200-300 new timing violations per block due to discrepancy of delta delay
- Extra Crosstalk delay at full chip needs to model at block level
- Adjusted I/O delay at block level with the use of scripts
- Fixing new violations at Block Level with new SDC



Conclusion – TTM with right PPA for Networking

Why schedule and TTM ?

- Data center market is growing at double digit growth and will Continue growing till 2025
- At the same time, it has competitors developing similar products
- Silicon is heart of digital economy which is multi billion in scale and hence launching the product on time is critical.

Summary :

Lot of challenges for Timing, Power, Area in data centre ASIC needs to meet schedule

Achieved TTM

- Advance feature of Tools
- Faster convergence of block
- Focus on Achieving Target PPA
- Experienced team and subject matter experts

Thank You, Questions/Queries?

Thank You

