- CEA and Quobly Report Simultaneous, Microsecond Qubit-Readout Solution With 10x Power-Use Reduction
- Video Interview: Progress on FAMES Pilot Line for 10-nm and 7-nm FD-SOI
- CEA-Leti Demonstrates Embedded FeRAM Platform Compatible with 22nm FD-SOI Node
- All systems go for 7nm FDSOI
- CEA-Leti Reports Breakthrough 3D Sequential Integration (3DSI) Of CMOS Over CMOS with Advanced Metal Lines
IP-SOC DAYS 2025 IP-SOC DAYS 2024 IP-SOC DAYS 2023 IP-SOC DAYS 2022 IP-SOC DAYS 2021 IP-SOC 2024 IP-SOC 2023 IP-SOC 2022 IP-SOC 2021
|
|||||||
![]() |
|

Quobly announces key milestone for fault-tolerant quantum computing
- Versatile Whitebox 1G Ethernet PHY IP Core with BroadR-Reach™ for Connected Automotive and Industrial Systems (May. 19, 2025)
- Codasip: Toward Custom, Safe, Secure RISC-V Compute Cores (May. 19, 2025)
- Semidynamics: From RISC-V with AI to AI with RISC-V (May. 19, 2025)
- InPsytech Joins Samsung SAFE™ IP Partner Program for Excellence in ONFI and UCIe IP Solutions (May. 19, 2025)
- Perforce Partners with Siemens for Software-Defined, AI-Powered, Silicon-Enabled Design (May. 16, 2025)
- See Latest News>>
Dec. 11, 2024 –
SAN FRANCISCO – December 11, 2024 -- Quobly, a leading French quantum computing startup, has reported that FD-SOI technology can serve as a scalable platform for commercial quantum computing, leveraging traditional semiconductor manufacturing fabs and CEA-Leti’s R&D pilot line.
The semiconductor industry has played a pivotal role in enabling classical computers to scale at cost; it has the same transformative potential for quantum computers, making them commercially scalable and cost competitive. Silicon spin qubits are excellent for achieving fault-tolerant, large-scale quantum computing, registering clock speeds in the µsec range, fidelity above 99% for one and two-qubit gate operations and incomparably small unit cell sizes (in the hundredths of 100nm²).
To capitalize on decades of semiconductor infrastructure investments, Quobly has adopted a fabless model. It focuses on FD-SOI, a commercially available CMOS technology manufactured by global leaders like STMicroelectronics, GlobalFoundries, and Samsung, as a platform for quantum computing.
Quobly’s work, reported on December 9th, 2024 at IEDM, addresses the critical challenges for scaling quantum systems. With CEA-Leti, CEA-IRIG and CNRS, Quobly has demonstrated the key building blocks for a quantum computer leveraging commercial FD-SOI:
- Low-temperature operations and characterization of their digital and analog performances, adhering to circuit design guidelines
- Single qubit operations using hole and electron spin qubits using the CEA-Leti’s R&D pilot line. This ambipolar platform optimizes system performance, leveraging electrons’ long coherence times for memory, as well as the holes’ strong spin-orbit interaction for fast data processing
- Charge control in commercial GF 22FDX to further define a standard cell for a two-qubit gate
Key achievements include:
- Cryogenic Control Electronics: Voltage gain up to 75dB, noise levels of 10-11V²∙μm²/Hz, and threshold voltage variability of 1.29mV∙μm.
- Ambipolar Spin Qubits: Co-integration of hole and electron qubits on FD-SOI technology, achieving 1μs manipulation speed for holes and 40μs coherence time (Hahn echo) for electrons.
- Two-Qubit Gate Standard Cell: Demonstration of double quantum dot operations with commercial FD-SOI.A Step Towards Commercial Quantum Systems
This work positions FD-SOI as essential for scalable quantum processors and establishes Quobly as a leader in cost-efficient, fault-tolerant quantum computing. By co-integrating quantum and classical components on the same platform, Quobly is shaping scalable QSoC architectures.
Read the scientific article: FD-SOI platform for quantum computing
About Quobly
Founded in 2022 in Grenoble, Quobly pioneers fault-tolerant quantum computing with semiconductor qubits. Combining cutting-edge research with industrial production, Quobly targets scalable systems with millions of qubits. The company raised €19 million in 2023, setting a European quantum sector record. Visit www.quobly.io.