www.design-reuse-embedded.com
Find Top SoC Solutions
for AI, Automotive, IoT, Security, Audio & Video...

Infrared vision: exceptionally sharp images

The CEA-Leti transfer of technology to LYNRED provides a set of technological building blocks for cooled infrared detectors with record-breaking performance. These new detectors can operate at 130 kelvin or more using a novel 7.5 µm pixel architecture with high resolution and exceptionally sharp images. These detectors are aimed at the defense sector, but may also be of interest for astrophysics and weather forecasting.

www.leti-cea.com/cea-tech/leti/english, Apr. 25, 2023 – 

In the field of infrared vision, as in microelectronics, miniaturization is a driving force behind innovation. 7.5-micron pixels offer lower costs and energy consumption as well as being lighter and more efficient than their 15-micron predecessors. CEA-Leti's research engineers have overcome unprecedented technical challenges to enable this transfer to industry.

Sharp images, even at 130 K

The key advantage of this technology is image sharpness. In an infrared detector, photons are absorbed by the semiconductor material and generate an electric charge, which is then diffused throughout the material for a few microseconds. This phenomenon is acceptable as long as the diffusion area is smaller than the size of the pixel.

However, if a charge can travel up to 20 µm and the pixel measures only 7.5 µm, the result is reduced image sharpness. In addition, LYNRED wants its detectors to have a high operating temperature (130 K or more as compared to current 110 K operating levels) as this would reduce the size and cost of the cryogenic cooling system. Unfortunately, higher temperatures also mean that charges travel further.

55% MTF*: well beyond expectations

CEA-Leti's research engineers have come up with an innovative solution to this challenge. The 7.5µm pixels are designed in such a way that electrical charges never reach the neighboring pixel. The innovation resides not in the material (a mercury-cadmium-tellurium alloy common in infrared vision solutions), but in the pixel architecture itself.

The resulting performance is remarkable in terms of sharpness, which is measured as a percentage of the "modulation transfer function" or MTF. While a theoretical detector made up of perfect pixels cannot exceed 64 % MTF, CEA-Leti's detectors achieve 55 %.

click here to read more...

 Back

Partner with us

List your Products

Suppliers, list and add your products for free.

More about D&R Privacy Policy

© 2024 Design And Reuse

All Rights Reserved.

No portion of this site may be copied, retransmitted, reposted, duplicated or otherwise used without the express written permission of Design And Reuse.