www.design-reuse-embedded.com
Find Top SoC Solutions
for AI, Automotive, IoT, Security, Audio & Video...

Autonomous cargo drone with sustainable structures and intelligent battery systems

Urban Air Mobility (UAM) does more than just open up new potential in terms of transporting goods: if some of urban traffic goes airborne, this will also offer completely new approaches when it comes to sustainable mobility solutions. In the Fraunhofer ALBACOPTER® Lighthouse Project, six Fraunhofer institutes are addressing the technical and social issues associated with UAM. Led by the Fraunhofer Institute for Transportation and Infrastructure Systems IVI, researchers have developed an aircraft that glides in a particularly efficient way – taking inspiration from the albatross. This device and other high-lights will feature at the joint Fraunhofer booth (D11, in Hall B1) at the IAA MOBILITY trade show in Munich from September 5 to 8, 2023.

www.fraunhofer.de/en.html, Sept. 01, 2023 – 

UAM is subject to strict requirements for aircraft and system technology, including safe, quiet VTOL (vertical take-off and landing) systems that can also deliver very powerful propulsion performance when hovering.

The challenges of urban air transportation

Electric multicopters offer the benefits of VTOL agility while also fulfilling safety and environmental criteria; however, their range and payload capacity are extremely limited due to their low efficiency and low energy storage densities. Larger wings could significantly improve the crafts' energy balance by allowing them to glide for long periods. On the other hand, these wings would hinder take-off and landing in urban areas. In addition, to make UAM financially viable, VTOL aircraft that fly autonomously will be required; however, this involves AI-based control systems, which create further safety risks.

For this reason, it can be assumed that in the future, UAM will become established via a wide range of paths, and that the aerospace technologies involved will be as varied as their use cases in sectors such as logistics drones, air taxis, rescue and surveillance drones and agricultural engineering.

The Fraunhofer ALBACOPTER® lighthouse project

These factors prompted the launch of a Fraunhofer lighthouse project in 2021, with the objective of building a flying platform that could combine the agility of a multicopter with the efficiency of a glider. "With the ALBACOPTER®, we aim to develop an experimental aircraft that pairs the maneuverability of a multicopter with an albatross' ability to glide long distances with minimal use of energy," explains Prof. Matthias Klingner, project manager and director of Fraunhofer IVI. "Some exceptional features of this experimental VTOL glider include drone bodies and cargo containers made from sustainable materials, high-performance coaxial propulsion systems, powerful multi-sensor systems for perceiving the environment and monitoring functionalities, and failsafe on-board electronic systems including an AI-based autopilot," Prof. Klingner continues. The consortium has addressed the complexity of this drone design by pooling the expertise of the participating institutes.

Recyclable design meets innovative propulsion solutions

The Fraunhofer Institute for Structural Durability and System Reliability LBF designed the structure and aerodynamic components of the ALBACOPTER®. For the structure, the Fraunhofer Institute for Chemical Technology ICT developed pultruded profiles, i.e., pultruded fiber-reinforced thermoplastics that were integrated into the space frame fuselage architecture. As with the transportation containers, which are made from biopolymer hard foam, these system components can easily be recycled. "In contrast to today's eVTOL systems, which are usually equipped with direct drives, the efficient propulsion design used in the ALBACOPTER® is based on high-speed synchronous motors with multi-stage transmission and high power density," explains Prof. Frank Henning, director of Fraunhofer ICT. The institute provides not only the new propulsion technology but also a special propulsion test rig in order to facilitate testing of pivot-capable eVTOL propulsion systems in the power classes up to 450 kW under realistic conditions.

click here to read more...

 Back

Partner with us

List your Products

Suppliers, list and add your products for free.

More about D&R Privacy Policy

© 2024 Design And Reuse

All Rights Reserved.

No portion of this site may be copied, retransmitted, reposted, duplicated or otherwise used without the express written permission of Design And Reuse.